Step |
Hyp |
Ref |
Expression |
1 |
|
biid |
⊢ ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
biid |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
eqid |
⊢ ( ω ∖ { ∅ } ) = ( ω ∖ { ∅ } ) |
4 |
|
eqid |
⊢ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } = { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } |
5 |
1 2 3 4
|
bnj882 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
6 |
|
vex |
⊢ 𝑔 ∈ V |
7 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
9 |
6 8
|
sbcie |
⊢ ( [ 𝑔 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
10 |
9
|
bicomi |
⊢ ( ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ [ 𝑔 / 𝑓 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
11 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑖 ) = ( 𝑔 ‘ suc 𝑖 ) ) |
12 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) |
13 |
12
|
iuneq1d |
⊢ ( 𝑓 = 𝑔 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
14 |
11 13
|
eqeq12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑓 = 𝑔 → ( ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
17 |
6 16
|
sbcie |
⊢ ( [ 𝑔 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
18 |
17
|
bicomi |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝑔 / 𝑓 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
19 |
4 10 18
|
bnj873 |
⊢ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } = { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } |
20 |
19
|
eleq2i |
⊢ ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ↔ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ) |
21 |
20
|
anbi1i |
⊢ ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑤 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑤 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) ) |
22 |
21
|
rexbii2 |
⊢ ( ∃ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } 𝑤 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } 𝑤 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) |
23 |
22
|
abbii |
⊢ { 𝑤 ∣ ∃ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } 𝑤 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) } = { 𝑤 ∣ ∃ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } 𝑤 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) } |
24 |
|
df-iun |
⊢ ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) = { 𝑤 ∣ ∃ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } 𝑤 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) } |
25 |
|
df-iun |
⊢ ∪ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) = { 𝑤 ∣ ∃ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } 𝑤 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) } |
26 |
23 24 25
|
3eqtr4i |
⊢ ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) = ∪ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
27 |
|
biid |
⊢ ( ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
28 |
|
biid |
⊢ ( ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
29 |
|
eqid |
⊢ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } = { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } |
30 |
|
biid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ ( ω ∖ { ∅ } ) ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑛 ∈ ( ω ∖ { ∅ } ) ) ) |
31 |
|
biid |
⊢ ( ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
32 |
|
biid |
⊢ ( [ 𝑧 / 𝑔 ] ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ [ 𝑧 / 𝑔 ] ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
33 |
|
biid |
⊢ ( [ 𝑧 / 𝑔 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝑧 / 𝑔 ] ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
34 |
|
biid |
⊢ ( [ 𝑧 / 𝑔 ] ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝑧 / 𝑔 ] ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
35 |
|
biid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
36 |
27 28 3 29 30 31 32 33 34 35
|
bnj849 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∈ V ) |
37 |
|
vex |
⊢ 𝑓 ∈ V |
38 |
37
|
dmex |
⊢ dom 𝑓 ∈ V |
39 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑖 ) ∈ V |
40 |
38 39
|
iunex |
⊢ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ∈ V |
41 |
40
|
rgenw |
⊢ ∀ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ∈ V |
42 |
|
iunexg |
⊢ ( ( { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∈ V ∧ ∀ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ∈ V ) → ∪ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ∈ V ) |
43 |
36 41 42
|
sylancl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∪ 𝑓 ∈ { 𝑔 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑔 Fn 𝑛 ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ∈ V ) |
44 |
26 43
|
eqeltrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∪ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ∈ V ) |
45 |
5 44
|
eqeltrid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ∈ V ) |