Step |
Hyp |
Ref |
Expression |
1 |
|
bnj900.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
2 |
|
bnj900.4 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
3 |
2
|
bnj1436 |
⊢ ( 𝑓 ∈ 𝐵 → ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
simp1 |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → 𝑓 Fn 𝑛 ) |
5 |
4
|
reximi |
⊢ ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) → ∃ 𝑛 ∈ 𝐷 𝑓 Fn 𝑛 ) |
6 |
|
fndm |
⊢ ( 𝑓 Fn 𝑛 → dom 𝑓 = 𝑛 ) |
7 |
6
|
reximi |
⊢ ( ∃ 𝑛 ∈ 𝐷 𝑓 Fn 𝑛 → ∃ 𝑛 ∈ 𝐷 dom 𝑓 = 𝑛 ) |
8 |
3 5 7
|
3syl |
⊢ ( 𝑓 ∈ 𝐵 → ∃ 𝑛 ∈ 𝐷 dom 𝑓 = 𝑛 ) |
9 |
8
|
bnj1196 |
⊢ ( 𝑓 ∈ 𝐵 → ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛 ) ) |
10 |
|
nfre1 |
⊢ Ⅎ 𝑛 ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) |
11 |
10
|
nfab |
⊢ Ⅎ 𝑛 { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
12 |
2 11
|
nfcxfr |
⊢ Ⅎ 𝑛 𝐵 |
13 |
12
|
nfcri |
⊢ Ⅎ 𝑛 𝑓 ∈ 𝐵 |
14 |
13
|
19.37 |
⊢ ( ∃ 𝑛 ( 𝑓 ∈ 𝐵 → ( 𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛 ) ) ↔ ( 𝑓 ∈ 𝐵 → ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛 ) ) ) |
15 |
9 14
|
mpbir |
⊢ ∃ 𝑛 ( 𝑓 ∈ 𝐵 → ( 𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛 ) ) |
16 |
|
nfv |
⊢ Ⅎ 𝑛 ∅ ∈ dom 𝑓 |
17 |
13 16
|
nfim |
⊢ Ⅎ 𝑛 ( 𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓 ) |
18 |
1
|
bnj529 |
⊢ ( 𝑛 ∈ 𝐷 → ∅ ∈ 𝑛 ) |
19 |
|
eleq2 |
⊢ ( dom 𝑓 = 𝑛 → ( ∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛 ) ) |
20 |
19
|
biimparc |
⊢ ( ( ∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛 ) → ∅ ∈ dom 𝑓 ) |
21 |
18 20
|
sylan |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛 ) → ∅ ∈ dom 𝑓 ) |
22 |
21
|
imim2i |
⊢ ( ( 𝑓 ∈ 𝐵 → ( 𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛 ) ) → ( 𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓 ) ) |
23 |
17 22
|
exlimi |
⊢ ( ∃ 𝑛 ( 𝑓 ∈ 𝐵 → ( 𝑛 ∈ 𝐷 ∧ dom 𝑓 = 𝑛 ) ) → ( 𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓 ) ) |
24 |
15 23
|
ax-mp |
⊢ ( 𝑓 ∈ 𝐵 → ∅ ∈ dom 𝑓 ) |