Step |
Hyp |
Ref |
Expression |
1 |
|
bnj908.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj908.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj908.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj908.4 |
⊢ ( 𝜒 ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
5 |
|
bnj908.5 |
⊢ ( 𝜃 ↔ ∀ 𝑚 ∈ 𝐷 ( 𝑚 E 𝑛 → [ 𝑚 / 𝑛 ] 𝜒 ) ) |
6 |
|
bnj908.10 |
⊢ ( 𝜑′ ↔ [ 𝑚 / 𝑛 ] 𝜑 ) |
7 |
|
bnj908.11 |
⊢ ( 𝜓′ ↔ [ 𝑚 / 𝑛 ] 𝜓 ) |
8 |
|
bnj908.12 |
⊢ ( 𝜒′ ↔ [ 𝑚 / 𝑛 ] 𝜒 ) |
9 |
|
bnj908.13 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑 ) |
10 |
|
bnj908.14 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓 ) |
11 |
|
bnj908.15 |
⊢ ( 𝜒″ ↔ [ 𝐺 / 𝑓 ] 𝜒 ) |
12 |
|
bnj908.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
13 |
|
bnj908.17 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
14 |
|
bnj908.18 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
15 |
|
bnj908.19 |
⊢ ( 𝜂 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝 ) ) |
16 |
|
bnj908.20 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖 ) ) |
17 |
|
bnj908.21 |
⊢ ( 𝜌 ↔ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖 ) ) |
18 |
|
bnj908.22 |
⊢ 𝐵 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
19 |
|
bnj908.23 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
20 |
|
bnj908.24 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
21 |
|
bnj908.25 |
⊢ 𝐿 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
22 |
|
bnj908.26 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) |
23 |
|
bnj248 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) ↔ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) ∧ 𝜂 ) ) |
24 |
|
vex |
⊢ 𝑚 ∈ V |
25 |
4 6 7 8 24
|
bnj207 |
⊢ ( 𝜒′ ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
26 |
25
|
biimpi |
⊢ ( 𝜒′ → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
27 |
|
euex |
⊢ ( ∃! 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) → ∃ 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
28 |
26 27
|
syl6 |
⊢ ( 𝜒′ → ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
29 |
28
|
impcom |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) → ∃ 𝑓 ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
30 |
29 13
|
bnj1198 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜒′ ) → ∃ 𝑓 𝜏 ) |
31 |
23 30
|
bnj832 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → ∃ 𝑓 𝜏 ) |
32 |
|
bnj645 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → 𝜂 ) |
33 |
|
19.41v |
⊢ ( ∃ 𝑓 ( 𝜏 ∧ 𝜂 ) ↔ ( ∃ 𝑓 𝜏 ∧ 𝜂 ) ) |
34 |
31 32 33
|
sylanbrc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → ∃ 𝑓 ( 𝜏 ∧ 𝜂 ) ) |
35 |
|
bnj642 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → 𝑅 FrSe 𝐴 ) |
36 |
|
19.41v |
⊢ ( ∃ 𝑓 ( ( 𝜏 ∧ 𝜂 ) ∧ 𝑅 FrSe 𝐴 ) ↔ ( ∃ 𝑓 ( 𝜏 ∧ 𝜂 ) ∧ 𝑅 FrSe 𝐴 ) ) |
37 |
34 35 36
|
sylanbrc |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → ∃ 𝑓 ( ( 𝜏 ∧ 𝜂 ) ∧ 𝑅 FrSe 𝐴 ) ) |
38 |
|
bnj170 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ↔ ( ( 𝜏 ∧ 𝜂 ) ∧ 𝑅 FrSe 𝐴 ) ) |
39 |
37 38
|
bnj1198 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → ∃ 𝑓 ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) ) |
40 |
1 6 24
|
bnj523 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
41 |
2 7 24
|
bnj539 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
42 |
40 41 3 12 13 14
|
bnj544 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) |
43 |
14 15 42
|
bnj561 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝐺 Fn 𝑛 ) |
44 |
12
|
bnj528 |
⊢ 𝐺 ∈ V |
45 |
1 9 44
|
bnj609 |
⊢ ( 𝜑″ ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
46 |
40 3 12 13 14 42 45
|
bnj545 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝜑″ ) |
47 |
14 15 46
|
bnj562 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜑″ ) |
48 |
2 10 44
|
bnj611 |
⊢ ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
49 |
3 12 13 14 15 16 18 19 20 21 22 40 41 42 17 43 48
|
bnj571 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → 𝜓″ ) |
50 |
43 47 49
|
3jca |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜂 ) → ( 𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) |
51 |
39 50
|
bnj593 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒′ ∧ 𝜂 ) → ∃ 𝑓 ( 𝐺 Fn 𝑛 ∧ 𝜑″ ∧ 𝜓″ ) ) |