Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj91.1 | ⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) | |
bnj91.2 | ⊢ 𝑍 ∈ V | ||
Assertion | bnj91 | ⊢ ( [ 𝑍 / 𝑦 ] 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj91.1 | ⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) | |
2 | bnj91.2 | ⊢ 𝑍 ∈ V | |
3 | 1 | sbcbii | ⊢ ( [ 𝑍 / 𝑦 ] 𝜑 ↔ [ 𝑍 / 𝑦 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
4 | 2 | bnj525 | ⊢ ( [ 𝑍 / 𝑦 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
5 | 3 4 | bitri | ⊢ ( [ 𝑍 / 𝑦 ] 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |