Metamath Proof Explorer


Theorem bnj916

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj916.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj916.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj916.3 𝐷 = ( ω ∖ { ∅ } )
bnj916.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj916.5 ( 𝜒 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
Assertion bnj916 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )

Proof

Step Hyp Ref Expression
1 bnj916.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj916.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj916.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj916.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
5 bnj916.5 ( 𝜒 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
6 bnj256 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) )
7 6 2exbii ( ∃ 𝑛𝑖 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ∃ 𝑛𝑖 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) )
8 19.41v ( ∃ 𝑛 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ∃ 𝑛 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) )
9 nfv 𝑖 𝑛𝐷
10 1 2 bnj911 ( ( 𝑓 Fn 𝑛𝜑𝜓 ) → ∀ 𝑖 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
11 10 nf5i 𝑖 ( 𝑓 Fn 𝑛𝜑𝜓 )
12 9 11 nfan 𝑖 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
13 12 19.42 ( ∃ 𝑖 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) )
14 13 exbii ( ∃ 𝑛𝑖 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) ↔ ∃ 𝑛 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) )
15 df-rex ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ∃ 𝑛 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) )
16 df-rex ( ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ↔ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) )
17 15 16 anbi12i ( ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ∃ 𝑛 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) )
18 8 14 17 3bitr4i ( ∃ 𝑛𝑖 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ) ∧ ( 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ) ↔ ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) )
19 7 18 bitri ( ∃ 𝑛𝑖 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) )
20 19 exbii ( ∃ 𝑓𝑛𝑖 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ∃ 𝑓 ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) )
21 5 3anbi2i ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓 ) ↔ ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ) )
22 21 anbi1i ( ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓 ) ∧ 𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ) ∧ 𝑦 ∈ ( 𝑓𝑖 ) ) )
23 df-bnj17 ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓 ) ∧ 𝑦 ∈ ( 𝑓𝑖 ) ) )
24 df-bnj17 ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓 ) ∧ 𝑦 ∈ ( 𝑓𝑖 ) ) )
25 22 23 24 3bitr4i ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) )
26 25 3exbii ( ∃ 𝑓𝑛𝑖 ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ∃ 𝑓𝑛𝑖 ( 𝑛𝐷 ∧ ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ 𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) )
27 1 2 3 4 bnj882 trCl ( 𝑋 , 𝐴 , 𝑅 ) = 𝑓𝐵 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 )
28 27 eleq2i ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ 𝑦 𝑓𝐵 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) )
29 eliun ( 𝑦 𝑓𝐵 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) ↔ ∃ 𝑓𝐵 𝑦 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) )
30 eliun ( 𝑦 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) ↔ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) )
31 30 rexbii ( ∃ 𝑓𝐵 𝑦 𝑖 ∈ dom 𝑓 ( 𝑓𝑖 ) ↔ ∃ 𝑓𝐵𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) )
32 28 29 31 3bitri ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓𝐵𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) )
33 df-rex ( ∃ 𝑓𝐵𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ↔ ∃ 𝑓 ( 𝑓𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) )
34 4 abeq2i ( 𝑓𝐵 ↔ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) )
35 34 anbi1i ( ( 𝑓𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) )
36 35 exbii ( ∃ 𝑓 ( 𝑓𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ∃ 𝑓 ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) )
37 32 33 36 3bitri ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ( ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑦 ∈ ( 𝑓𝑖 ) ) )
38 20 26 37 3bitr4ri ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓𝑛𝑖 ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) )
39 bnj643 ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) → 𝜒 )
40 5 bnj564 ( 𝜒 → dom 𝑓 = 𝑛 )
41 40 eleq2d ( 𝜒 → ( 𝑖 ∈ dom 𝑓𝑖𝑛 ) )
42 anbi1 ( ( 𝑖 ∈ dom 𝑓𝑖𝑛 ) → ( ( 𝑖 ∈ dom 𝑓 ∧ ( 𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) ) ↔ ( 𝑖𝑛 ∧ ( 𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) ) ) )
43 bnj334 ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑖 ∈ dom 𝑓𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) )
44 bnj252 ( ( 𝑖 ∈ dom 𝑓𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑖 ∈ dom 𝑓 ∧ ( 𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) ) )
45 43 44 bitri ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑖 ∈ dom 𝑓 ∧ ( 𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) ) )
46 bnj334 ( ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑖𝑛𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) )
47 bnj252 ( ( 𝑖𝑛𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑖𝑛 ∧ ( 𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) ) )
48 46 47 bitri ( ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑖𝑛 ∧ ( 𝑛𝐷𝜒𝑦 ∈ ( 𝑓𝑖 ) ) ) )
49 42 45 48 3bitr4g ( ( 𝑖 ∈ dom 𝑓𝑖𝑛 ) → ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ) )
50 39 41 49 3syl ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) → ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ) )
51 50 ibi ( ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) → ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
52 51 2eximi ( ∃ 𝑛𝑖 ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) → ∃ 𝑛𝑖 ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
53 52 eximi ( ∃ 𝑓𝑛𝑖 ( 𝑛𝐷𝜒𝑖 ∈ dom 𝑓𝑦 ∈ ( 𝑓𝑖 ) ) → ∃ 𝑓𝑛𝑖 ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
54 38 53 sylbi ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝑛𝐷𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )