Step |
Hyp |
Ref |
Expression |
1 |
|
bnj917.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj917.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj917.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj917.4 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
5 |
|
bnj917.5 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
6 |
|
biid |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
7 |
1 2 3 4 6
|
bnj916 |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
8 |
|
bnj252 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
9 |
5 8
|
bitri |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
10 |
9
|
3anbi1i |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
11 |
|
bnj253 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
12 |
10 11
|
bitr4i |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
13 |
12
|
3exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
14 |
7 13
|
sylibr |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |