Metamath Proof Explorer


Theorem bnj918

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj918.1 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
Assertion bnj918 𝐺 ∈ V

Proof

Step Hyp Ref Expression
1 bnj918.1 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
2 vex 𝑓 ∈ V
3 snex { ⟨ 𝑛 , 𝐶 ⟩ } ∈ V
4 2 3 unex ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } ) ∈ V
5 1 4 eqeltri 𝐺 ∈ V