Step |
Hyp |
Ref |
Expression |
1 |
|
bnj927.1 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
2 |
|
bnj927.2 |
⊢ 𝐶 ∈ V |
3 |
|
simpr |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → 𝑓 Fn 𝑛 ) |
4 |
|
vex |
⊢ 𝑛 ∈ V |
5 |
4 2
|
fnsn |
⊢ { 〈 𝑛 , 𝐶 〉 } Fn { 𝑛 } |
6 |
5
|
a1i |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → { 〈 𝑛 , 𝐶 〉 } Fn { 𝑛 } ) |
7 |
|
bnj521 |
⊢ ( 𝑛 ∩ { 𝑛 } ) = ∅ |
8 |
7
|
a1i |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → ( 𝑛 ∩ { 𝑛 } ) = ∅ ) |
9 |
3 6 8
|
fnund |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) Fn ( 𝑛 ∪ { 𝑛 } ) ) |
10 |
1
|
fneq1i |
⊢ ( 𝐺 Fn ( 𝑛 ∪ { 𝑛 } ) ↔ ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) Fn ( 𝑛 ∪ { 𝑛 } ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → 𝐺 Fn ( 𝑛 ∪ { 𝑛 } ) ) |
12 |
|
df-suc |
⊢ suc 𝑛 = ( 𝑛 ∪ { 𝑛 } ) |
13 |
12
|
eqeq2i |
⊢ ( 𝑝 = suc 𝑛 ↔ 𝑝 = ( 𝑛 ∪ { 𝑛 } ) ) |
14 |
13
|
biimpi |
⊢ ( 𝑝 = suc 𝑛 → 𝑝 = ( 𝑛 ∪ { 𝑛 } ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → 𝑝 = ( 𝑛 ∪ { 𝑛 } ) ) |
16 |
15
|
fneq2d |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → ( 𝐺 Fn 𝑝 ↔ 𝐺 Fn ( 𝑛 ∪ { 𝑛 } ) ) ) |
17 |
11 16
|
mpbird |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → 𝐺 Fn 𝑝 ) |