Step |
Hyp |
Ref |
Expression |
1 |
|
bnj934.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj934.4 |
⊢ ( 𝜑′ ↔ [ 𝑝 / 𝑛 ] 𝜑 ) |
3 |
|
bnj934.7 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑′ ) |
4 |
|
bnj934.50 |
⊢ 𝐺 ∈ V |
5 |
|
eqtr |
⊢ ( ( ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) → ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
6 |
1 5
|
sylan2b |
⊢ ( ( ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ∧ 𝜑 ) → ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
7 |
|
vex |
⊢ 𝑝 ∈ V |
8 |
1 2 7
|
bnj523 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
9 |
8 1
|
bitr4i |
⊢ ( 𝜑′ ↔ 𝜑 ) |
10 |
9
|
sbcbii |
⊢ ( [ 𝐺 / 𝑓 ] 𝜑′ ↔ [ 𝐺 / 𝑓 ] 𝜑 ) |
11 |
3 10
|
bitri |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑 ) |
12 |
1 11 4
|
bnj609 |
⊢ ( 𝜑″ ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
13 |
6 12
|
sylibr |
⊢ ( ( ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ∧ 𝜑 ) → 𝜑″ ) |
14 |
13
|
ancoms |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ) → 𝜑″ ) |