Metamath Proof Explorer


Theorem bnj934

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj934.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj934.4 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
bnj934.7 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
bnj934.50 𝐺 ∈ V
Assertion bnj934 ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ) → 𝜑″ )

Proof

Step Hyp Ref Expression
1 bnj934.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj934.4 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
3 bnj934.7 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
4 bnj934.50 𝐺 ∈ V
5 eqtr ( ( ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) → ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
6 1 5 sylan2b ( ( ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ∧ 𝜑 ) → ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
7 vex 𝑝 ∈ V
8 1 2 7 bnj523 ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
9 8 1 bitr4i ( 𝜑′𝜑 )
10 9 sbcbii ( [ 𝐺 / 𝑓 ] 𝜑′[ 𝐺 / 𝑓 ] 𝜑 )
11 3 10 bitri ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑 )
12 1 11 4 bnj609 ( 𝜑″ ↔ ( 𝐺 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
13 6 12 sylibr ( ( ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ∧ 𝜑 ) → 𝜑″ )
14 13 ancoms ( ( 𝜑 ∧ ( 𝐺 ‘ ∅ ) = ( 𝑓 ‘ ∅ ) ) → 𝜑″ )