| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj934.1 | 
							⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj934.4 | 
							⊢ ( 𝜑′  ↔  [ 𝑝  /  𝑛 ] 𝜑 )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj934.7 | 
							⊢ ( 𝜑″  ↔  [ 𝐺  /  𝑓 ] 𝜑′ )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj934.50 | 
							⊢ 𝐺  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							eqtr | 
							⊢ ( ( ( 𝐺 ‘ ∅ )  =  ( 𝑓 ‘ ∅ )  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  →  ( 𝐺 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							sylan2b | 
							⊢ ( ( ( 𝐺 ‘ ∅ )  =  ( 𝑓 ‘ ∅ )  ∧  𝜑 )  →  ( 𝐺 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							vex | 
							⊢ 𝑝  ∈  V  | 
						
						
							| 8 | 
							
								1 2 7
							 | 
							bnj523 | 
							⊢ ( 𝜑′  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 9 | 
							
								8 1
							 | 
							bitr4i | 
							⊢ ( 𝜑′  ↔  𝜑 )  | 
						
						
							| 10 | 
							
								9
							 | 
							sbcbii | 
							⊢ ( [ 𝐺  /  𝑓 ] 𝜑′  ↔  [ 𝐺  /  𝑓 ] 𝜑 )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							bitri | 
							⊢ ( 𝜑″  ↔  [ 𝐺  /  𝑓 ] 𝜑 )  | 
						
						
							| 12 | 
							
								1 11 4
							 | 
							bnj609 | 
							⊢ ( 𝜑″  ↔  ( 𝐺 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							sylibr | 
							⊢ ( ( ( 𝐺 ‘ ∅ )  =  ( 𝑓 ‘ ∅ )  ∧  𝜑 )  →  𝜑″ )  | 
						
						
							| 14 | 
							
								13
							 | 
							ancoms | 
							⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ ∅ )  =  ( 𝑓 ‘ ∅ ) )  →  𝜑″ )  |