| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj938.1 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj938.2 | 
							⊢ ( 𝜏  ↔  ( 𝑓  Fn  𝑚  ∧  𝜑′  ∧  𝜓′ ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj938.3 | 
							⊢ ( 𝜎  ↔  ( 𝑚  ∈  𝐷  ∧  𝑛  =  suc  𝑚  ∧  𝑝  ∈  𝑚 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj938.4 | 
							⊢ ( 𝜑′  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj938.5 | 
							⊢ ( 𝜓′  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑚  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elisset | 
							⊢ ( 𝑋  ∈  𝐴  →  ∃ 𝑥 𝑥  =  𝑋 )  | 
						
						
							| 7 | 
							
								6
							 | 
							bnj706 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝜏  ∧  𝜎 )  →  ∃ 𝑥 𝑥  =  𝑋 )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj291 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝜏  ∧  𝜎 )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 )  ∧  𝑋  ∈  𝐴 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simplbi | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝜏  ∧  𝜎 )  →  ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj602 | 
							⊢ ( 𝑥  =  𝑋  →   pred ( 𝑥 ,  𝐴 ,  𝑅 )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 12 | 
							
								11 4
							 | 
							bitr4di | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ↔  𝜑′ ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3anbi2d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑓  Fn  𝑚  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∧  𝜓′ )  ↔  ( 𝑓  Fn  𝑚  ∧  𝜑′  ∧  𝜓′ ) ) )  | 
						
						
							| 14 | 
							
								13 2
							 | 
							bitr4di | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑓  Fn  𝑚  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∧  𝜓′ )  ↔  𝜏 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3anbi2d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑅  FrSe  𝐴  ∧  ( 𝑓  Fn  𝑚  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∧  𝜓′ )  ∧  𝜎 )  ↔  ( 𝑅  FrSe  𝐴  ∧  𝜏  ∧  𝜎 ) ) )  | 
						
						
							| 16 | 
							
								9 15
							 | 
							imbitrrid | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝜏  ∧  𝜎 )  →  ( 𝑅  FrSe  𝐴  ∧  ( 𝑓  Fn  𝑚  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∧  𝜓′ )  ∧  𝜎 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑓  Fn  𝑚  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∧  𝜓′ )  ↔  ( 𝑓  Fn  𝑚  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∧  𝜓′ ) )  | 
						
						
							| 18 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 19 | 
							
								1 17 3 18 5
							 | 
							bnj546 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  ( 𝑓  Fn  𝑚  ∧  ( 𝑓 ‘ ∅ )  =   pred ( 𝑥 ,  𝐴 ,  𝑅 )  ∧  𝜓′ )  ∧  𝜎 )  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ∈  V )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							syl6 | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝜏  ∧  𝜎 )  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ∈  V ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							exlimiv | 
							⊢ ( ∃ 𝑥 𝑥  =  𝑋  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝜏  ∧  𝜎 )  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ∈  V ) )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							mpcom | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝜏  ∧  𝜎 )  →  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑝 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ∈  V )  |