Step |
Hyp |
Ref |
Expression |
1 |
|
bnj938.1 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
2 |
|
bnj938.2 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
3 |
|
bnj938.3 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
4 |
|
bnj938.4 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
5 |
|
bnj938.5 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
6 |
|
elisset |
⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑥 𝑥 = 𝑋 ) |
7 |
6
|
bnj706 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ∃ 𝑥 𝑥 = 𝑋 ) |
8 |
|
bnj291 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑋 ∈ 𝐴 ) ) |
9 |
8
|
simplbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ) |
10 |
|
bnj602 |
⊢ ( 𝑥 = 𝑋 → pred ( 𝑥 , 𝐴 , 𝑅 ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
12 |
11 4
|
bitr4di |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ 𝜑′ ) ) |
13 |
12
|
3anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 Fn 𝑚 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓′ ) ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) ) |
14 |
13 2
|
bitr4di |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 Fn 𝑚 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓′ ) ↔ 𝜏 ) ) |
15 |
14
|
3anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴 ∧ ( 𝑓 Fn 𝑚 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓′ ) ∧ 𝜎 ) ↔ ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ) ) |
16 |
9 15
|
syl5ibr |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ( 𝑅 FrSe 𝐴 ∧ ( 𝑓 Fn 𝑚 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓′ ) ∧ 𝜎 ) ) ) |
17 |
|
biid |
⊢ ( ( 𝑓 Fn 𝑚 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓′ ) ↔ ( 𝑓 Fn 𝑚 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓′ ) ) |
18 |
|
biid |
⊢ ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
19 |
1 17 3 18 5
|
bnj546 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ ( 𝑓 Fn 𝑚 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ 𝜓′ ) ∧ 𝜎 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |
20 |
16 19
|
syl6 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) ) |
21 |
20
|
exlimiv |
⊢ ( ∃ 𝑥 𝑥 = 𝑋 → ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) ) |
22 |
7 21
|
mpcom |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∈ V ) |