Step |
Hyp |
Ref |
Expression |
1 |
|
bnj941.1 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
2 |
|
opeq2 |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → 〈 𝑛 , 𝐶 〉 = 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 ) |
3 |
2
|
sneqd |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → { 〈 𝑛 , 𝐶 〉 } = { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) |
4 |
3
|
uneq2d |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) = ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) ) |
5 |
1 4
|
syl5eq |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) ) |
6 |
5
|
fneq1d |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → ( 𝐺 Fn 𝑝 ↔ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) Fn 𝑝 ) ) |
7 |
6
|
imbi2d |
⊢ ( 𝐶 = if ( 𝐶 ∈ V , 𝐶 , ∅ ) → ( ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → 𝐺 Fn 𝑝 ) ↔ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) Fn 𝑝 ) ) ) |
8 |
|
eqid |
⊢ ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) = ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) |
9 |
|
0ex |
⊢ ∅ ∈ V |
10 |
9
|
elimel |
⊢ if ( 𝐶 ∈ V , 𝐶 , ∅ ) ∈ V |
11 |
8 10
|
bnj927 |
⊢ ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → ( 𝑓 ∪ { 〈 𝑛 , if ( 𝐶 ∈ V , 𝐶 , ∅ ) 〉 } ) Fn 𝑝 ) |
12 |
7 11
|
dedth |
⊢ ( 𝐶 ∈ V → ( ( 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ) → 𝐺 Fn 𝑝 ) ) |