Step |
Hyp |
Ref |
Expression |
1 |
|
bnj953.1 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
|
bnj953.2 |
⊢ ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) → ∀ 𝑦 ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
3 |
|
bnj312 |
⊢ ( ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ↔ ( ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ) |
4 |
|
bnj251 |
⊢ ( ( ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ↔ ( ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ↔ ( ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ) ) ) |
6 |
1
|
bnj115 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
7 |
|
sp |
⊢ ( ∀ 𝑖 ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
8 |
7
|
impcom |
⊢ ( ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ ∀ 𝑖 ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
9 |
6 8
|
sylan2b |
⊢ ( ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
10 |
2
|
bnj956 |
⊢ ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) → ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
11 |
|
eqtr3 |
⊢ ( ( ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∧ ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
12 |
9 10 11
|
syl2anr |
⊢ ( ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ) → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
13 |
|
eqtr |
⊢ ( ( ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
14 |
12 13
|
sylan2 |
⊢ ( ( ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ) ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
15 |
5 14
|
sylbi |
⊢ ( ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |