Step |
Hyp |
Ref |
Expression |
1 |
|
bnj956.1 |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 𝐴 = 𝐵 ) |
2 |
|
eleq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
3 |
2
|
anbi1d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
4 |
3
|
alexbii |
⊢ ( ∀ 𝑥 𝐴 = 𝐵 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
5 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) ) |
6 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
7 |
4 5 6
|
3bitr4g |
⊢ ( ∀ 𝑥 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) |
8 |
1 7
|
syl |
⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) |
9 |
8
|
abbidv |
⊢ ( 𝐴 = 𝐵 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 } ) |
10 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 } |
11 |
|
df-iun |
⊢ ∪ 𝑥 ∈ 𝐵 𝐶 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 } |
12 |
9 10 11
|
3eqtr4g |
⊢ ( 𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ) |