Metamath Proof Explorer


Theorem bnj956

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj956.1 ( 𝐴 = 𝐵 → ∀ 𝑥 𝐴 = 𝐵 )
Assertion bnj956 ( 𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 bnj956.1 ( 𝐴 = 𝐵 → ∀ 𝑥 𝐴 = 𝐵 )
2 eleq2 ( 𝐴 = 𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
3 2 anbi1d ( 𝐴 = 𝐵 → ( ( 𝑥𝐴𝑦𝐶 ) ↔ ( 𝑥𝐵𝑦𝐶 ) ) )
4 3 alexbii ( ∀ 𝑥 𝐴 = 𝐵 → ( ∃ 𝑥 ( 𝑥𝐴𝑦𝐶 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝑦𝐶 ) ) )
5 df-rex ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥 ( 𝑥𝐴𝑦𝐶 ) )
6 df-rex ( ∃ 𝑥𝐵 𝑦𝐶 ↔ ∃ 𝑥 ( 𝑥𝐵𝑦𝐶 ) )
7 4 5 6 3bitr4g ( ∀ 𝑥 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐶 ) )
8 1 7 syl ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝑦𝐶 ↔ ∃ 𝑥𝐵 𝑦𝐶 ) )
9 8 abbidv ( 𝐴 = 𝐵 → { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐶 } = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦𝐶 } )
10 df-iun 𝑥𝐴 𝐶 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦𝐶 }
11 df-iun 𝑥𝐵 𝐶 = { 𝑦 ∣ ∃ 𝑥𝐵 𝑦𝐶 }
12 9 10 11 3eqtr4g ( 𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶 )