Metamath Proof Explorer


Theorem bnj958

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj958.1 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj958.2 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
Assertion bnj958 ( ( 𝐺𝑖 ) = ( 𝑓𝑖 ) → ∀ 𝑦 ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )

Proof

Step Hyp Ref Expression
1 bnj958.1 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
2 bnj958.2 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
3 nfcv 𝑦 𝑓
4 nfcv 𝑦 𝑛
5 nfiu1 𝑦 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
6 1 5 nfcxfr 𝑦 𝐶
7 4 6 nfop 𝑦𝑛 , 𝐶
8 7 nfsn 𝑦 { ⟨ 𝑛 , 𝐶 ⟩ }
9 3 8 nfun 𝑦 ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
10 2 9 nfcxfr 𝑦 𝐺
11 nfcv 𝑦 𝑖
12 10 11 nffv 𝑦 ( 𝐺𝑖 )
13 12 nfeq1 𝑦 ( 𝐺𝑖 ) = ( 𝑓𝑖 )
14 13 nf5ri ( ( 𝐺𝑖 ) = ( 𝑓𝑖 ) → ∀ 𝑦 ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )