Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj958.1 | ⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) | |
bnj958.2 | ⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) | ||
Assertion | bnj958 | ⊢ ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) → ∀ 𝑦 ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj958.1 | ⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) | |
2 | bnj958.2 | ⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) | |
3 | nfcv | ⊢ Ⅎ 𝑦 𝑓 | |
4 | nfcv | ⊢ Ⅎ 𝑦 𝑛 | |
5 | nfiu1 | ⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) | |
6 | 1 5 | nfcxfr | ⊢ Ⅎ 𝑦 𝐶 |
7 | 4 6 | nfop | ⊢ Ⅎ 𝑦 〈 𝑛 , 𝐶 〉 |
8 | 7 | nfsn | ⊢ Ⅎ 𝑦 { 〈 𝑛 , 𝐶 〉 } |
9 | 3 8 | nfun | ⊢ Ⅎ 𝑦 ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
10 | 2 9 | nfcxfr | ⊢ Ⅎ 𝑦 𝐺 |
11 | nfcv | ⊢ Ⅎ 𝑦 𝑖 | |
12 | 10 11 | nffv | ⊢ Ⅎ 𝑦 ( 𝐺 ‘ 𝑖 ) |
13 | 12 | nfeq1 | ⊢ Ⅎ 𝑦 ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) |
14 | 13 | nf5ri | ⊢ ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) → ∀ 𝑦 ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |