Metamath Proof Explorer


Theorem bnj965

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj965.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj965.2 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓 )
bnj965.12000 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj965.13000 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
Assertion bnj965 ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj965.1 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
2 bnj965.2 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓 )
3 bnj965.12000 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
4 bnj965.13000 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
5 4 bnj918 𝐺 ∈ V
6 1 2 5 3 4 bnj1000 ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑁 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )