Metamath Proof Explorer


Theorem bnj966

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj966.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj966.10 𝐷 = ( ω ∖ { ∅ } )
bnj966.12 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj966.13 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
bnj966.44 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V )
bnj966.53 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → 𝐺 Fn 𝑝 )
Assertion bnj966 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj966.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
2 bnj966.10 𝐷 = ( ω ∖ { ∅ } )
3 bnj966.12 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
4 bnj966.13 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
5 bnj966.44 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V )
6 bnj966.53 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → 𝐺 Fn 𝑝 )
7 6 fnfund ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → Fun 𝐺 )
8 7 3adant3 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → Fun 𝐺 )
9 opex 𝑛 , 𝐶 ⟩ ∈ V
10 9 snid 𝑛 , 𝐶 ⟩ ∈ { ⟨ 𝑛 , 𝐶 ⟩ }
11 elun2 ( ⟨ 𝑛 , 𝐶 ⟩ ∈ { ⟨ 𝑛 , 𝐶 ⟩ } → ⟨ 𝑛 , 𝐶 ⟩ ∈ ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } ) )
12 10 11 ax-mp 𝑛 , 𝐶 ⟩ ∈ ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
13 12 4 eleqtrri 𝑛 , 𝐶 ⟩ ∈ 𝐺
14 funopfv ( Fun 𝐺 → ( ⟨ 𝑛 , 𝐶 ⟩ ∈ 𝐺 → ( 𝐺𝑛 ) = 𝐶 ) )
15 8 13 14 mpisyl ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( 𝐺𝑛 ) = 𝐶 )
16 simp22 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → 𝑛 = suc 𝑚 )
17 simp33 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → 𝑛 = suc 𝑖 )
18 bnj551 ( ( 𝑛 = suc 𝑚𝑛 = suc 𝑖 ) → 𝑚 = 𝑖 )
19 16 17 18 syl2anc ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → 𝑚 = 𝑖 )
20 suceq ( 𝑚 = 𝑖 → suc 𝑚 = suc 𝑖 )
21 20 eqeq2d ( 𝑚 = 𝑖 → ( 𝑛 = suc 𝑚𝑛 = suc 𝑖 ) )
22 21 biimpac ( ( 𝑛 = suc 𝑚𝑚 = 𝑖 ) → 𝑛 = suc 𝑖 )
23 22 fveq2d ( ( 𝑛 = suc 𝑚𝑚 = 𝑖 ) → ( 𝐺𝑛 ) = ( 𝐺 ‘ suc 𝑖 ) )
24 fveq2 ( 𝑚 = 𝑖 → ( 𝑓𝑚 ) = ( 𝑓𝑖 ) )
25 24 bnj1113 ( 𝑚 = 𝑖 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
26 3 25 syl5eq ( 𝑚 = 𝑖𝐶 = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
27 26 adantl ( ( 𝑛 = suc 𝑚𝑚 = 𝑖 ) → 𝐶 = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
28 23 27 eqeq12d ( ( 𝑛 = suc 𝑚𝑚 = 𝑖 ) → ( ( 𝐺𝑛 ) = 𝐶 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
29 16 19 28 syl2anc ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( ( 𝐺𝑛 ) = 𝐶 ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
30 15 29 mpbid ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
31 5 3adant3 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → 𝐶 ∈ V )
32 1 bnj1235 ( 𝜒𝑓 Fn 𝑛 )
33 32 3ad2ant1 ( ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) → 𝑓 Fn 𝑛 )
34 33 3ad2ant2 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → 𝑓 Fn 𝑛 )
35 simp23 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → 𝑝 = suc 𝑛 )
36 31 34 35 17 bnj951 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖 ) )
37 2 bnj923 ( 𝑛𝐷𝑛 ∈ ω )
38 1 37 bnj769 ( 𝜒𝑛 ∈ ω )
39 38 3ad2ant1 ( ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) → 𝑛 ∈ ω )
40 simp3 ( ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) → 𝑛 = suc 𝑖 )
41 39 40 bnj240 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( 𝑛 ∈ ω ∧ 𝑛 = suc 𝑖 ) )
42 vex 𝑖 ∈ V
43 42 bnj216 ( 𝑛 = suc 𝑖𝑖𝑛 )
44 43 adantl ( ( 𝑛 ∈ ω ∧ 𝑛 = suc 𝑖 ) → 𝑖𝑛 )
45 41 44 syl ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → 𝑖𝑛 )
46 bnj658 ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖 ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ) )
47 46 anim1i ( ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖 ) ∧ 𝑖𝑛 ) → ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ) ∧ 𝑖𝑛 ) )
48 df-bnj17 ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) ↔ ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛 ) ∧ 𝑖𝑛 ) )
49 47 48 sylibr ( ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖 ) ∧ 𝑖𝑛 ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) )
50 4 bnj945 ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑖𝑛 ) → ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
51 49 50 syl ( ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝑛 = suc 𝑖 ) ∧ 𝑖𝑛 ) → ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
52 36 45 51 syl2anc ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
53 3 4 bnj958 ( ( 𝐺𝑖 ) = ( 𝑓𝑖 ) → ∀ 𝑦 ( 𝐺𝑖 ) = ( 𝑓𝑖 ) )
54 53 bnj956 ( ( 𝐺𝑖 ) = ( 𝑓𝑖 ) → 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
55 54 eqeq2d ( ( 𝐺𝑖 ) = ( 𝑓𝑖 ) → ( ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
56 52 55 syl ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
57 30 56 mpbird ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )