Step |
Hyp |
Ref |
Expression |
1 |
|
bnj967.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
|
bnj967.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
3 |
|
bnj967.10 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj967.12 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
5 |
|
bnj967.13 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
6 |
|
bnj967.44 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝐶 ∈ V ) |
7 |
6
|
3adant3 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → 𝐶 ∈ V ) |
8 |
2
|
bnj1235 |
⊢ ( 𝜒 → 𝑓 Fn 𝑛 ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → 𝑓 Fn 𝑛 ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → 𝑓 Fn 𝑛 ) |
11 |
|
simp23 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → 𝑝 = suc 𝑛 ) |
12 |
|
simp3 |
⊢ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) → suc 𝑖 ∈ 𝑛 ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → suc 𝑖 ∈ 𝑛 ) |
14 |
7 10 11 13
|
bnj951 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛 ) ) |
15 |
3
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
16 |
2 15
|
bnj769 |
⊢ ( 𝜒 → 𝑛 ∈ ω ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → 𝑛 ∈ ω ) |
18 |
17 12
|
bnj240 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝑛 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) |
19 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
20 |
|
ordtr |
⊢ ( Ord 𝑛 → Tr 𝑛 ) |
21 |
19 20
|
syl |
⊢ ( 𝑛 ∈ ω → Tr 𝑛 ) |
22 |
|
trsuc |
⊢ ( ( Tr 𝑛 ∧ suc 𝑖 ∈ 𝑛 ) → 𝑖 ∈ 𝑛 ) |
23 |
21 22
|
sylan |
⊢ ( ( 𝑛 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) → 𝑖 ∈ 𝑛 ) |
24 |
18 23
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → 𝑖 ∈ 𝑛 ) |
25 |
|
bnj658 |
⊢ ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ) ) |
26 |
25
|
anim1i |
⊢ ( ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑖 ∈ 𝑛 ) → ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ) ∧ 𝑖 ∈ 𝑛 ) ) |
27 |
|
df-bnj17 |
⊢ ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛 ) ↔ ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ) ∧ 𝑖 ∈ 𝑛 ) ) |
28 |
26 27
|
sylibr |
⊢ ( ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝑖 ∈ 𝑛 ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛 ) ) |
29 |
14 24 28
|
syl2anc |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛 ) ) |
30 |
5
|
bnj945 |
⊢ ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛 ) → ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
32 |
5
|
bnj945 |
⊢ ( ( 𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) |
33 |
14 32
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ) |
34 |
|
3simpb |
⊢ ( ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) → ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) |
35 |
34
|
3ad2ant3 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ) |
36 |
2
|
bnj1254 |
⊢ ( 𝜒 → 𝜓 ) |
37 |
36
|
3ad2ant1 |
⊢ ( ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → 𝜓 ) |
38 |
37
|
3ad2ant2 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → 𝜓 ) |
39 |
31 33 35 38
|
bnj951 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) ) |
40 |
4 5
|
bnj958 |
⊢ ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) → ∀ 𝑦 ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ) |
41 |
1 40
|
bnj953 |
⊢ ( ( ( 𝐺 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑖 ) ∧ ( 𝐺 ‘ suc 𝑖 ) = ( 𝑓 ‘ suc 𝑖 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ) ∧ 𝜓 ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
42 |
39 41
|
syl |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ∧ ( 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ suc 𝑖 ∈ 𝑛 ) ) → ( 𝐺 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |