| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj970.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj970.10 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 3 | 
							
								1
							 | 
							bnj1232 | 
							⊢ ( 𝜒  →  𝑛  ∈  𝐷 )  | 
						
						
							| 4 | 
							
								3
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 )  →  𝑛  ∈  𝐷 )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  →  𝑛  ∈  𝐷 )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  →  𝑝  =  suc  𝑛 )  | 
						
						
							| 7 | 
							
								2
							 | 
							bnj923 | 
							⊢ ( 𝑛  ∈  𝐷  →  𝑛  ∈  ω )  | 
						
						
							| 8 | 
							
								
							 | 
							peano2 | 
							⊢ ( 𝑛  ∈  ω  →  suc  𝑛  ∈  ω )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑝  =  suc  𝑛  →  ( 𝑝  ∈  ω  ↔  suc  𝑛  ∈  ω ) )  | 
						
						
							| 10 | 
							
								
							 | 
							bianir | 
							⊢ ( ( suc  𝑛  ∈  ω  ∧  ( 𝑝  ∈  ω  ↔  suc  𝑛  ∈  ω ) )  →  𝑝  ∈  ω )  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							syl2an | 
							⊢ ( ( 𝑛  ∈  ω  ∧  𝑝  =  suc  𝑛 )  →  𝑝  ∈  ω )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							sylan | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑝  =  suc  𝑛 )  →  𝑝  ∈  ω )  | 
						
						
							| 13 | 
							
								
							 | 
							df-suc | 
							⊢ suc  𝑛  =  ( 𝑛  ∪  { 𝑛 } )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqeq2i | 
							⊢ ( 𝑝  =  suc  𝑛  ↔  𝑝  =  ( 𝑛  ∪  { 𝑛 } ) )  | 
						
						
							| 15 | 
							
								
							 | 
							ssun2 | 
							⊢ { 𝑛 }  ⊆  ( 𝑛  ∪  { 𝑛 } )  | 
						
						
							| 16 | 
							
								
							 | 
							vex | 
							⊢ 𝑛  ∈  V  | 
						
						
							| 17 | 
							
								16
							 | 
							snnz | 
							⊢ { 𝑛 }  ≠  ∅  | 
						
						
							| 18 | 
							
								
							 | 
							ssn0 | 
							⊢ ( ( { 𝑛 }  ⊆  ( 𝑛  ∪  { 𝑛 } )  ∧  { 𝑛 }  ≠  ∅ )  →  ( 𝑛  ∪  { 𝑛 } )  ≠  ∅ )  | 
						
						
							| 19 | 
							
								15 17 18
							 | 
							mp2an | 
							⊢ ( 𝑛  ∪  { 𝑛 } )  ≠  ∅  | 
						
						
							| 20 | 
							
								
							 | 
							neeq1 | 
							⊢ ( 𝑝  =  ( 𝑛  ∪  { 𝑛 } )  →  ( 𝑝  ≠  ∅  ↔  ( 𝑛  ∪  { 𝑛 } )  ≠  ∅ ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							mpbiri | 
							⊢ ( 𝑝  =  ( 𝑛  ∪  { 𝑛 } )  →  𝑝  ≠  ∅ )  | 
						
						
							| 22 | 
							
								14 21
							 | 
							sylbi | 
							⊢ ( 𝑝  =  suc  𝑛  →  𝑝  ≠  ∅ )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantl | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑝  =  suc  𝑛 )  →  𝑝  ≠  ∅ )  | 
						
						
							| 24 | 
							
								2
							 | 
							eleq2i | 
							⊢ ( 𝑝  ∈  𝐷  ↔  𝑝  ∈  ( ω  ∖  { ∅ } ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝑝  ∈  ( ω  ∖  { ∅ } )  ↔  ( 𝑝  ∈  ω  ∧  𝑝  ≠  ∅ ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							bitri | 
							⊢ ( 𝑝  ∈  𝐷  ↔  ( 𝑝  ∈  ω  ∧  𝑝  ≠  ∅ ) )  | 
						
						
							| 27 | 
							
								12 23 26
							 | 
							sylanbrc | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑝  =  suc  𝑛 )  →  𝑝  ∈  𝐷 )  | 
						
						
							| 28 | 
							
								5 6 27
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  →  𝑝  ∈  𝐷 )  |