| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj978.1 | 
							⊢ ( 𝜃  ↔  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj978.2 | 
							⊢ ( 𝜃  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylbir | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							gen2 | 
							⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj253 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							imbi1i | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							2albii | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							3impexp | 
							⊢ ( ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							2albii | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑦 ∀ 𝑧 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							19.21v | 
							⊢ ( ∀ 𝑧 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑧 ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							19.21v | 
							⊢ ( ∀ 𝑧 ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  ↔  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							imbi2i | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑧 ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							bitri | 
							⊢ ( ∀ 𝑧 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							albii | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  ↔  ∀ 𝑦 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							19.21v | 
							⊢ ( ∀ 𝑦 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ∀ 𝑦 ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							bicomi | 
							⊢ ( ∀ 𝑦 ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  ↔  ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							imbi2i | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦 ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 19 | 
							
								14 15 18
							 | 
							3bitri | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ( 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  →  ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 20 | 
							
								7 9 19
							 | 
							3bitri | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) ) )  | 
						
						
							| 21 | 
							
								4 20
							 | 
							mpbi | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							df-ss | 
							⊢ (  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ralbii | 
							⊢ ( ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ∀ 𝑧 ( 𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 )  →  𝑧  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							sylibr | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →  ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							df-bnj19 | 
							⊢ (  TrFo (  trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ,  𝐴 ,  𝑅 )  ↔  ∀ 𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆   trCl ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							sylibr | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  →   TrFo (  trCl ( 𝑋 ,  𝐴 ,  𝑅 ) ,  𝐴 ,  𝑅 ) )  |