Step |
Hyp |
Ref |
Expression |
1 |
|
bnj978.1 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
2 |
|
bnj978.2 |
⊢ ( 𝜃 → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
3 |
1 2
|
sylbir |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
4 |
3
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
5 |
|
bnj253 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
6 |
5
|
imbi1i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
7 |
6
|
2albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
8 |
|
3impexp |
⊢ ( ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ) |
9 |
8
|
2albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ) |
10 |
|
19.21v |
⊢ ( ∀ 𝑧 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑧 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ) |
11 |
|
19.21v |
⊢ ( ∀ 𝑧 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) |
12 |
11
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑧 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ) |
13 |
10 12
|
bitri |
⊢ ( ∀ 𝑧 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ) |
14 |
13
|
albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ∀ 𝑦 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ) |
15 |
|
19.21v |
⊢ ( ∀ 𝑦 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ) |
16 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) |
17 |
16
|
bicomi |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
18 |
17
|
imbi2i |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) |
19 |
14 15 18
|
3bitri |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) |
20 |
7 9 19
|
3bitri |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) |
21 |
4 20
|
mpbi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
22 |
|
dfss2 |
⊢ ( pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
23 |
22
|
ralbii |
⊢ ( ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
24 |
21 23
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
25 |
|
df-bnj19 |
⊢ ( TrFo ( trCl ( 𝑋 , 𝐴 , 𝑅 ) , 𝐴 , 𝑅 ) ↔ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) |
26 |
24 25
|
sylibr |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) → TrFo ( trCl ( 𝑋 , 𝐴 , 𝑅 ) , 𝐴 , 𝑅 ) ) |