Metamath Proof Explorer


Theorem bnj978

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj978.1 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj978.2 ( 𝜃𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
Assertion bnj978 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → TrFo ( trCl ( 𝑋 , 𝐴 , 𝑅 ) , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 bnj978.1 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
2 bnj978.2 ( 𝜃𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
3 1 2 sylbir ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
4 3 gen2 𝑦𝑧 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
5 bnj253 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
6 5 imbi1i ( ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
7 6 2albii ( ∀ 𝑦𝑧 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑦𝑧 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
8 3impexp ( ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
9 8 2albii ( ∀ 𝑦𝑧 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑦𝑧 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
10 19.21v ( ∀ 𝑧 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑧 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
11 19.21v ( ∀ 𝑧 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
12 11 imbi2i ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑧 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
13 10 12 bitri ( ∀ 𝑧 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
14 13 albii ( ∀ 𝑦𝑧 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ∀ 𝑦 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
15 19.21v ( ∀ 𝑦 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑦 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) )
16 df-ral ( ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
17 16 bicomi ( ∀ 𝑦 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ↔ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
18 17 imbi2i ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑦 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
19 14 15 18 3bitri ( ∀ 𝑦𝑧 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
20 7 9 19 3bitri ( ∀ 𝑦𝑧 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) )
21 4 20 mpbi ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
22 dfss2 ( pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
23 22 ralbii ( ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∀ 𝑧 ( 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) → 𝑧 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
24 21 23 sylibr ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
25 df-bnj19 ( TrFo ( trCl ( 𝑋 , 𝐴 , 𝑅 ) , 𝐴 , 𝑅 ) ↔ ∀ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ trCl ( 𝑋 , 𝐴 , 𝑅 ) )
26 24 25 sylibr ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → TrFo ( trCl ( 𝑋 , 𝐴 , 𝑅 ) , 𝐴 , 𝑅 ) )