Metamath Proof Explorer


Theorem bnj981

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj981.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj981.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj981.3 𝐷 = ( ω ∖ { ∅ } )
bnj981.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj981.5 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
Assertion bnj981 ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) ) )

Proof

Step Hyp Ref Expression
1 bnj981.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj981.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj981.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj981.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
5 bnj981.5 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
6 nfv 𝑦 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 )
7 nfcv 𝑦 ω
8 nfv 𝑦 suc 𝑖𝑛
9 nfiu1 𝑦 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
10 9 nfeq2 𝑦 ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 )
11 8 10 nfim 𝑦 ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
12 7 11 nfralw 𝑦𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
13 2 12 nfxfr 𝑦 𝜓
14 13 nf5ri ( 𝜓 → ∀ 𝑦 𝜓 )
15 14 5 bnj1096 ( 𝜒 → ∀ 𝑦 𝜒 )
16 15 nf5i 𝑦 𝜒
17 nfv 𝑦 𝑖𝑛
18 nfv 𝑦 𝑍 ∈ ( 𝑓𝑖 )
19 16 17 18 nf3an 𝑦 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) )
20 19 nfex 𝑦𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) )
21 20 nfex 𝑦𝑛𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) )
22 21 nfex 𝑦𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) )
23 6 22 nfim 𝑦 ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) ) )
24 eleq1 ( 𝑦 = 𝑍 → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) )
25 eleq1 ( 𝑦 = 𝑍 → ( 𝑦 ∈ ( 𝑓𝑖 ) ↔ 𝑍 ∈ ( 𝑓𝑖 ) ) )
26 25 3anbi3d ( 𝑦 = 𝑍 → ( ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) ) ) )
27 26 3exbidv ( 𝑦 = 𝑍 → ( ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) ) ) )
28 24 27 imbi12d ( 𝑦 = 𝑍 → ( ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ) ↔ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) ) ) ) )
29 1 2 3 4 5 bnj917 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
30 23 28 29 vtoclg1f ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) ) ) )
31 30 pm2.43i ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑍 ∈ ( 𝑓𝑖 ) ) )