Step |
Hyp |
Ref |
Expression |
1 |
|
bnj981.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj981.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj981.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj981.4 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
5 |
|
bnj981.5 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
6 |
|
nfv |
⊢ Ⅎ 𝑦 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) |
7 |
|
nfcv |
⊢ Ⅎ 𝑦 ω |
8 |
|
nfv |
⊢ Ⅎ 𝑦 suc 𝑖 ∈ 𝑛 |
9 |
|
nfiu1 |
⊢ Ⅎ 𝑦 ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
10 |
9
|
nfeq2 |
⊢ Ⅎ 𝑦 ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
11 |
8 10
|
nfim |
⊢ Ⅎ 𝑦 ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
12 |
7 11
|
nfralw |
⊢ Ⅎ 𝑦 ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
13 |
2 12
|
nfxfr |
⊢ Ⅎ 𝑦 𝜓 |
14 |
13
|
nf5ri |
⊢ ( 𝜓 → ∀ 𝑦 𝜓 ) |
15 |
14 5
|
bnj1096 |
⊢ ( 𝜒 → ∀ 𝑦 𝜒 ) |
16 |
15
|
nf5i |
⊢ Ⅎ 𝑦 𝜒 |
17 |
|
nfv |
⊢ Ⅎ 𝑦 𝑖 ∈ 𝑛 |
18 |
|
nfv |
⊢ Ⅎ 𝑦 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) |
19 |
16 17 18
|
nf3an |
⊢ Ⅎ 𝑦 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) |
20 |
19
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) |
21 |
20
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) |
22 |
21
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) |
23 |
6 22
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
24 |
|
eleq1 |
⊢ ( 𝑦 = 𝑍 → ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
25 |
|
eleq1 |
⊢ ( 𝑦 = 𝑍 → ( 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ↔ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
26 |
25
|
3anbi3d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
27 |
26
|
3exbidv |
⊢ ( 𝑦 = 𝑍 → ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
28 |
24 27
|
imbi12d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) ) |
29 |
1 2 3 4 5
|
bnj917 |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
30 |
23 28 29
|
vtoclg1f |
⊢ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
31 |
30
|
pm2.43i |
⊢ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |