Metamath Proof Explorer


Theorem bnj982

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj982.1 ( 𝜑 → ∀ 𝑥 𝜑 )
bnj982.2 ( 𝜓 → ∀ 𝑥 𝜓 )
bnj982.3 ( 𝜒 → ∀ 𝑥 𝜒 )
bnj982.4 ( 𝜃 → ∀ 𝑥 𝜃 )
Assertion bnj982 ( ( 𝜑𝜓𝜒𝜃 ) → ∀ 𝑥 ( 𝜑𝜓𝜒𝜃 ) )

Proof

Step Hyp Ref Expression
1 bnj982.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 bnj982.2 ( 𝜓 → ∀ 𝑥 𝜓 )
3 bnj982.3 ( 𝜒 → ∀ 𝑥 𝜒 )
4 bnj982.4 ( 𝜃 → ∀ 𝑥 𝜃 )
5 df-bnj17 ( ( 𝜑𝜓𝜒𝜃 ) ↔ ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) )
6 1 2 3 hb3an ( ( 𝜑𝜓𝜒 ) → ∀ 𝑥 ( 𝜑𝜓𝜒 ) )
7 6 4 hban ( ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) → ∀ 𝑥 ( ( 𝜑𝜓𝜒 ) ∧ 𝜃 ) )
8 5 7 hbxfrbi ( ( 𝜑𝜓𝜒𝜃 ) → ∀ 𝑥 ( 𝜑𝜓𝜒𝜃 ) )