| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj983.1 | 
							⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj983.2 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj983.3 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj983.4 | 
							⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) }  | 
						
						
							| 5 | 
							
								
							 | 
							bnj983.5 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 6 | 
							
								1 2 3 4
							 | 
							bnj882 | 
							⊢  trCl ( 𝑋 ,  𝐴 ,  𝑅 )  =  ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq2i | 
							⊢ ( 𝑍  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  𝑍  ∈  ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eliun | 
							⊢ ( 𝑍  ∈  ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  ↔  ∃ 𝑓  ∈  𝐵 𝑍  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eliun | 
							⊢ ( 𝑍  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  ↔  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rexbii | 
							⊢ ( ∃ 𝑓  ∈  𝐵 𝑍  ∈  ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  ↔  ∃ 𝑓  ∈  𝐵 ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							bitri | 
							⊢ ( 𝑍  ∈  ∪  𝑓  ∈  𝐵 ∪  𝑖  ∈  dom  𝑓 ( 𝑓 ‘ 𝑖 )  ↔  ∃ 𝑓  ∈  𝐵 ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑓  ∈  𝐵 ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 )  ↔  ∃ 𝑓 ( 𝑓  ∈  𝐵  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 13 | 
							
								4
							 | 
							eqabri | 
							⊢ ( 𝑓  ∈  𝐵  ↔  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							anbi1i | 
							⊢ ( ( 𝑓  ∈  𝐵  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							exbii | 
							⊢ ( ∃ 𝑓 ( 𝑓  ∈  𝐵  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ∃ 𝑓 ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							bitri | 
							⊢ ( ∃ 𝑓  ∈  𝐵 ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 )  ↔  ∃ 𝑓 ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 17 | 
							
								7 11 16
							 | 
							3bitri | 
							⊢ ( 𝑍  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ∃ 𝑓 ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							bnj252 | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 19 | 
							
								5 18
							 | 
							bitri | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							exbii | 
							⊢ ( ∃ 𝑛 𝜒  ↔  ∃ 𝑛 ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							anbi1i | 
							⊢ ( ( ∃ 𝑛 𝜒  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  ↔  ( ∃ 𝑛 ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ∃ 𝑛 ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 )  ↔  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							anbi12i | 
							⊢ ( ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ( ∃ 𝑛 ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							bitr4i | 
							⊢ ( ( ∃ 𝑛 𝜒  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  ↔  ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ∧  ∃ 𝑖  ∈  dom  𝑓 𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 26 | 
							
								17 25
							 | 
							bnj133 | 
							⊢ ( 𝑍  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ∃ 𝑓 ( ∃ 𝑛 𝜒  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							19.41v | 
							⊢ ( ∃ 𝑛 ( 𝜒  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  ↔  ( ∃ 𝑛 𝜒  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							bnj133 | 
							⊢ ( 𝑍  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ∃ 𝑓 ∃ 𝑛 ( 𝜒  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 29 | 
							
								2
							 | 
							bnj1095 | 
							⊢ ( 𝜓  →  ∀ 𝑖 𝜓 )  | 
						
						
							| 30 | 
							
								29 5
							 | 
							bnj1096 | 
							⊢ ( 𝜒  →  ∀ 𝑖 𝜒 )  | 
						
						
							| 31 | 
							
								30
							 | 
							nf5i | 
							⊢ Ⅎ 𝑖 𝜒  | 
						
						
							| 32 | 
							
								31
							 | 
							19.42 | 
							⊢ ( ∃ 𝑖 ( 𝜒  ∧  ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  ↔  ( 𝜒  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							2exbii | 
							⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒  ∧  ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  ↔  ∃ 𝑓 ∃ 𝑛 ( 𝜒  ∧  ∃ 𝑖 ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 34 | 
							
								28 33
							 | 
							bitr4i | 
							⊢ ( 𝑍  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒  ∧  ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ( 𝜒  ∧  ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							3exbii | 
							⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒  ∧  ( 𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							fndm | 
							⊢ ( 𝑓  Fn  𝑛  →  dom  𝑓  =  𝑛 )  | 
						
						
							| 38 | 
							
								5 37
							 | 
							bnj770 | 
							⊢ ( 𝜒  →  dom  𝑓  =  𝑛 )  | 
						
						
							| 39 | 
							
								
							 | 
							eleq2 | 
							⊢ ( dom  𝑓  =  𝑛  →  ( 𝑖  ∈  dom  𝑓  ↔  𝑖  ∈  𝑛 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							3anbi2d | 
							⊢ ( dom  𝑓  =  𝑛  →  ( ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							syl | 
							⊢ ( 𝜒  →  ( ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  →  ( ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ibi | 
							⊢ ( ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  →  ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 44 | 
							
								41
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  →  ( ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							ibir | 
							⊢ ( ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  →  ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 46 | 
							
								43 45
							 | 
							impbii | 
							⊢ ( ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							3exbii | 
							⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒  ∧  𝑖  ∈  dom  𝑓  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) )  ↔  ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  | 
						
						
							| 48 | 
							
								34 36 47
							 | 
							3bitr2i | 
							⊢ ( 𝑍  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ↔  ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒  ∧  𝑖  ∈  𝑛  ∧  𝑍  ∈  ( 𝑓 ‘ 𝑖 ) ) )  |