Step |
Hyp |
Ref |
Expression |
1 |
|
bnj983.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj983.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj983.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
4 |
|
bnj983.4 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
5 |
|
bnj983.5 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
6 |
1 2 3 4
|
bnj882 |
⊢ trCl ( 𝑋 , 𝐴 , 𝑅 ) = ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) |
7 |
6
|
eleq2i |
⊢ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ 𝑍 ∈ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) |
8 |
|
eliun |
⊢ ( 𝑍 ∈ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ∈ 𝐵 𝑍 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ) |
9 |
|
eliun |
⊢ ( 𝑍 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) |
10 |
9
|
rexbii |
⊢ ( ∃ 𝑓 ∈ 𝐵 𝑍 ∈ ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ∈ 𝐵 ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) |
11 |
8 10
|
bitri |
⊢ ( 𝑍 ∈ ∪ 𝑓 ∈ 𝐵 ∪ 𝑖 ∈ dom 𝑓 ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ∈ 𝐵 ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) |
12 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ 𝐵 ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ( 𝑓 ∈ 𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
13 |
4
|
abeq2i |
⊢ ( 𝑓 ∈ 𝐵 ↔ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
14 |
13
|
anbi1i |
⊢ ( ( 𝑓 ∈ 𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
15 |
14
|
exbii |
⊢ ( ∃ 𝑓 ( 𝑓 ∈ 𝐵 ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
16 |
12 15
|
bitri |
⊢ ( ∃ 𝑓 ∈ 𝐵 ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑓 ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
17 |
7 11 16
|
3bitri |
⊢ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
18 |
|
bnj252 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
19 |
5 18
|
bitri |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
20 |
19
|
exbii |
⊢ ( ∃ 𝑛 𝜒 ↔ ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
21 |
20
|
anbi1i |
⊢ ( ( ∃ 𝑛 𝜒 ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
22 |
|
df-rex |
⊢ ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ) |
23 |
|
df-rex |
⊢ ( ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ↔ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
24 |
22 23
|
anbi12i |
⊢ ( ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( ∃ 𝑛 ( 𝑛 ∈ 𝐷 ∧ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
25 |
21 24
|
bitr4i |
⊢ ( ( ∃ 𝑛 𝜒 ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑖 ∈ dom 𝑓 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
26 |
17 25
|
bnj133 |
⊢ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ( ∃ 𝑛 𝜒 ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
27 |
|
19.41v |
⊢ ( ∃ 𝑛 ( 𝜒 ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( ∃ 𝑛 𝜒 ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
28 |
26 27
|
bnj133 |
⊢ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ∃ 𝑛 ( 𝜒 ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
29 |
2
|
bnj1095 |
⊢ ( 𝜓 → ∀ 𝑖 𝜓 ) |
30 |
29 5
|
bnj1096 |
⊢ ( 𝜒 → ∀ 𝑖 𝜒 ) |
31 |
30
|
nf5i |
⊢ Ⅎ 𝑖 𝜒 |
32 |
31
|
19.42 |
⊢ ( ∃ 𝑖 ( 𝜒 ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ( 𝜒 ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
33 |
32
|
2exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ↔ ∃ 𝑓 ∃ 𝑛 ( 𝜒 ∧ ∃ 𝑖 ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
34 |
28 33
|
bitr4i |
⊢ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
35 |
|
3anass |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
36 |
35
|
3exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ ( 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
37 |
|
fndm |
⊢ ( 𝑓 Fn 𝑛 → dom 𝑓 = 𝑛 ) |
38 |
5 37
|
bnj770 |
⊢ ( 𝜒 → dom 𝑓 = 𝑛 ) |
39 |
|
eleq2 |
⊢ ( dom 𝑓 = 𝑛 → ( 𝑖 ∈ dom 𝑓 ↔ 𝑖 ∈ 𝑛 ) ) |
40 |
39
|
3anbi2d |
⊢ ( dom 𝑓 = 𝑛 → ( ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
41 |
38 40
|
syl |
⊢ ( 𝜒 → ( ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
42 |
41
|
3ad2ant1 |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) → ( ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
43 |
42
|
ibi |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) → ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
44 |
41
|
3ad2ant1 |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) → ( ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
45 |
44
|
ibir |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) → ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
46 |
43 45
|
impbii |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
47 |
46
|
3exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ dom 𝑓 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
48 |
34 36 47
|
3bitr2i |
⊢ ( 𝑍 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑍 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |