| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj984.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj984.11 | 
							⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) }  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq2i | 
							⊢ ( 𝐺  ∈  𝐵  ↔  𝐺  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) } )  | 
						
						
							| 4 | 
							
								
							 | 
							sbc8g | 
							⊢ ( 𝐺  ∈  𝐴  →  ( [ 𝐺  /  𝑓 ] ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  𝐺  ∈  { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) } ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitr4id | 
							⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  𝐵  ↔  [ 𝐺  /  𝑓 ] ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ∃ 𝑛 ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj252 | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							bitri | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							bnj133 | 
							⊢ ( ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ∃ 𝑛 𝜒 )  | 
						
						
							| 10 | 
							
								9
							 | 
							sbcbii | 
							⊢ ( [ 𝐺  /  𝑓 ] ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  [ 𝐺  /  𝑓 ] ∃ 𝑛 𝜒 )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							bitrdi | 
							⊢ ( 𝐺  ∈  𝐴  →  ( 𝐺  ∈  𝐵  ↔  [ 𝐺  /  𝑓 ] ∃ 𝑛 𝜒 ) )  |