| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj985v.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj985v.6 | 
							⊢ ( 𝜒′  ↔  [ 𝑝  /  𝑛 ] 𝜒 )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj985v.9 | 
							⊢ ( 𝜒″  ↔  [ 𝐺  /  𝑓 ] 𝜒′ )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj985v.11 | 
							⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) }  | 
						
						
							| 5 | 
							
								
							 | 
							bnj985v.13 | 
							⊢ 𝐺  =  ( 𝑓  ∪  { 〈 𝑛 ,  𝐶 〉 } )  | 
						
						
							| 6 | 
							
								5
							 | 
							bnj918 | 
							⊢ 𝐺  ∈  V  | 
						
						
							| 7 | 
							
								1 4
							 | 
							bnj984 | 
							⊢ ( 𝐺  ∈  V  →  ( 𝐺  ∈  𝐵  ↔  [ 𝐺  /  𝑓 ] ∃ 𝑛 𝜒 ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							ax-mp | 
							⊢ ( 𝐺  ∈  𝐵  ↔  [ 𝐺  /  𝑓 ] ∃ 𝑛 𝜒 )  | 
						
						
							| 9 | 
							
								
							 | 
							sbcex2 | 
							⊢ ( [ 𝐺  /  𝑓 ] ∃ 𝑝 𝜒′  ↔  ∃ 𝑝 [ 𝐺  /  𝑓 ] 𝜒′ )  | 
						
						
							| 10 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑝 𝜒  | 
						
						
							| 11 | 
							
								10
							 | 
							sb8ef | 
							⊢ ( ∃ 𝑛 𝜒  ↔  ∃ 𝑝 [ 𝑝  /  𝑛 ] 𝜒 )  | 
						
						
							| 12 | 
							
								
							 | 
							sbsbc | 
							⊢ ( [ 𝑝  /  𝑛 ] 𝜒  ↔  [ 𝑝  /  𝑛 ] 𝜒 )  | 
						
						
							| 13 | 
							
								12
							 | 
							exbii | 
							⊢ ( ∃ 𝑝 [ 𝑝  /  𝑛 ] 𝜒  ↔  ∃ 𝑝 [ 𝑝  /  𝑛 ] 𝜒 )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							bitri | 
							⊢ ( ∃ 𝑛 𝜒  ↔  ∃ 𝑝 [ 𝑝  /  𝑛 ] 𝜒 )  | 
						
						
							| 15 | 
							
								14 2
							 | 
							bnj133 | 
							⊢ ( ∃ 𝑛 𝜒  ↔  ∃ 𝑝 𝜒′ )  | 
						
						
							| 16 | 
							
								15
							 | 
							sbcbii | 
							⊢ ( [ 𝐺  /  𝑓 ] ∃ 𝑛 𝜒  ↔  [ 𝐺  /  𝑓 ] ∃ 𝑝 𝜒′ )  | 
						
						
							| 17 | 
							
								3
							 | 
							exbii | 
							⊢ ( ∃ 𝑝 𝜒″  ↔  ∃ 𝑝 [ 𝐺  /  𝑓 ] 𝜒′ )  | 
						
						
							| 18 | 
							
								9 16 17
							 | 
							3bitr4i | 
							⊢ ( [ 𝐺  /  𝑓 ] ∃ 𝑛 𝜒  ↔  ∃ 𝑝 𝜒″ )  | 
						
						
							| 19 | 
							
								8 18
							 | 
							bitri | 
							⊢ ( 𝐺  ∈  𝐵  ↔  ∃ 𝑝 𝜒″ )  |