Step |
Hyp |
Ref |
Expression |
1 |
|
bnj986.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
2 |
|
bnj986.10 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
3 |
|
bnj986.15 |
⊢ ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
4 |
2
|
bnj158 |
⊢ ( 𝑛 ∈ 𝐷 → ∃ 𝑚 ∈ ω 𝑛 = suc 𝑚 ) |
5 |
1 4
|
bnj769 |
⊢ ( 𝜒 → ∃ 𝑚 ∈ ω 𝑛 = suc 𝑚 ) |
6 |
5
|
bnj1196 |
⊢ ( 𝜒 → ∃ 𝑚 ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ) |
7 |
|
vex |
⊢ 𝑛 ∈ V |
8 |
7
|
sucex |
⊢ suc 𝑛 ∈ V |
9 |
8
|
isseti |
⊢ ∃ 𝑝 𝑝 = suc 𝑛 |
10 |
6 9
|
jctir |
⊢ ( 𝜒 → ( ∃ 𝑚 ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ ∃ 𝑝 𝑝 = suc 𝑛 ) ) |
11 |
|
exdistr |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ 𝑝 = suc 𝑛 ) ↔ ∃ 𝑚 ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ ∃ 𝑝 𝑝 = suc 𝑛 ) ) |
12 |
|
19.41v |
⊢ ( ∃ 𝑚 ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ ∃ 𝑝 𝑝 = suc 𝑛 ) ↔ ( ∃ 𝑚 ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ ∃ 𝑝 𝑝 = suc 𝑛 ) ) |
13 |
11 12
|
bitr2i |
⊢ ( ( ∃ 𝑚 ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ ∃ 𝑝 𝑝 = suc 𝑛 ) ↔ ∃ 𝑚 ∃ 𝑝 ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ 𝑝 = suc 𝑛 ) ) |
14 |
10 13
|
sylib |
⊢ ( 𝜒 → ∃ 𝑚 ∃ 𝑝 ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ 𝑝 = suc 𝑛 ) ) |
15 |
|
df-3an |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ↔ ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ 𝑝 = suc 𝑛 ) ) |
16 |
3 15
|
bitri |
⊢ ( 𝜏 ↔ ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ 𝑝 = suc 𝑛 ) ) |
17 |
16
|
2exbii |
⊢ ( ∃ 𝑚 ∃ 𝑝 𝜏 ↔ ∃ 𝑚 ∃ 𝑝 ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ) ∧ 𝑝 = suc 𝑛 ) ) |
18 |
14 17
|
sylibr |
⊢ ( 𝜒 → ∃ 𝑚 ∃ 𝑝 𝜏 ) |