Metamath Proof Explorer


Theorem bnj996

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj996.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj996.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj996.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj996.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj996.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
bnj996.6 ( 𝜂 ↔ ( 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
bnj996.13 𝐷 = ( ω ∖ { ∅ } )
bnj996.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
Assertion bnj996 𝑓𝑛𝑖𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) )

Proof

Step Hyp Ref Expression
1 bnj996.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj996.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj996.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj996.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
5 bnj996.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
6 bnj996.6 ( 𝜂 ↔ ( 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
7 bnj996.13 𝐷 = ( ω ∖ { ∅ } )
8 bnj996.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
9 1 2 7 8 3 bnj917 ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
10 4 9 bnj771 ( 𝜃 → ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) )
11 3anass ( ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝜒 ∧ ( 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ) )
12 6 anbi2i ( ( 𝜒𝜂 ) ↔ ( 𝜒 ∧ ( 𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ) )
13 11 12 bitr4i ( ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝜒𝜂 ) )
14 13 3exbii ( ∃ 𝑓𝑛𝑖 ( 𝜒𝑖𝑛𝑦 ∈ ( 𝑓𝑖 ) ) ↔ ∃ 𝑓𝑛𝑖 ( 𝜒𝜂 ) )
15 10 14 sylib ( 𝜃 → ∃ 𝑓𝑛𝑖 ( 𝜒𝜂 ) )
16 3 7 5 bnj986 ( 𝜒 → ∃ 𝑚𝑝 𝜏 )
17 16 ancli ( 𝜒 → ( 𝜒 ∧ ∃ 𝑚𝑝 𝜏 ) )
18 19.42vv ( ∃ 𝑚𝑝 ( 𝜒𝜏 ) ↔ ( 𝜒 ∧ ∃ 𝑚𝑝 𝜏 ) )
19 17 18 sylibr ( 𝜒 → ∃ 𝑚𝑝 ( 𝜒𝜏 ) )
20 19 anim1i ( ( 𝜒𝜂 ) → ( ∃ 𝑚𝑝 ( 𝜒𝜏 ) ∧ 𝜂 ) )
21 19.41vv ( ∃ 𝑚𝑝 ( ( 𝜒𝜏 ) ∧ 𝜂 ) ↔ ( ∃ 𝑚𝑝 ( 𝜒𝜏 ) ∧ 𝜂 ) )
22 20 21 sylibr ( ( 𝜒𝜂 ) → ∃ 𝑚𝑝 ( ( 𝜒𝜏 ) ∧ 𝜂 ) )
23 df-3an ( ( 𝜒𝜏𝜂 ) ↔ ( ( 𝜒𝜏 ) ∧ 𝜂 ) )
24 23 2exbii ( ∃ 𝑚𝑝 ( 𝜒𝜏𝜂 ) ↔ ∃ 𝑚𝑝 ( ( 𝜒𝜏 ) ∧ 𝜂 ) )
25 22 24 sylibr ( ( 𝜒𝜂 ) → ∃ 𝑚𝑝 ( 𝜒𝜏𝜂 ) )
26 25 2eximi ( ∃ 𝑛𝑖 ( 𝜒𝜂 ) → ∃ 𝑛𝑖𝑚𝑝 ( 𝜒𝜏𝜂 ) )
27 15 26 bnj593 ( 𝜃 → ∃ 𝑓𝑛𝑖𝑚𝑝 ( 𝜒𝜏𝜂 ) )
28 19.37v ( ∃ 𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑝 ( 𝜒𝜏𝜂 ) ) )
29 28 exbii ( ∃ 𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ∃ 𝑚 ( 𝜃 → ∃ 𝑝 ( 𝜒𝜏𝜂 ) ) )
30 29 bnj132 ( ∃ 𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑚𝑝 ( 𝜒𝜏𝜂 ) ) )
31 30 exbii ( ∃ 𝑖𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ∃ 𝑖 ( 𝜃 → ∃ 𝑚𝑝 ( 𝜒𝜏𝜂 ) ) )
32 31 bnj132 ( ∃ 𝑖𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑖𝑚𝑝 ( 𝜒𝜏𝜂 ) ) )
33 32 exbii ( ∃ 𝑛𝑖𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ∃ 𝑛 ( 𝜃 → ∃ 𝑖𝑚𝑝 ( 𝜒𝜏𝜂 ) ) )
34 33 bnj132 ( ∃ 𝑛𝑖𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑛𝑖𝑚𝑝 ( 𝜒𝜏𝜂 ) ) )
35 34 exbii ( ∃ 𝑓𝑛𝑖𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ∃ 𝑓 ( 𝜃 → ∃ 𝑛𝑖𝑚𝑝 ( 𝜒𝜏𝜂 ) ) )
36 35 bnj132 ( ∃ 𝑓𝑛𝑖𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑓𝑛𝑖𝑚𝑝 ( 𝜒𝜏𝜂 ) ) )
37 27 36 mpbir 𝑓𝑛𝑖𝑚𝑝 ( 𝜃 → ( 𝜒𝜏𝜂 ) )