Step |
Hyp |
Ref |
Expression |
1 |
|
bnj996.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj996.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj996.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj996.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
5 |
|
bnj996.5 |
⊢ ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
6 |
|
bnj996.6 |
⊢ ( 𝜂 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
7 |
|
bnj996.13 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
8 |
|
bnj996.14 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
9 |
1 2 7 8 3
|
bnj917 |
⊢ ( 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
10 |
4 9
|
bnj771 |
⊢ ( 𝜃 → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
11 |
|
3anass |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ ( 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
12 |
6
|
anbi2i |
⊢ ( ( 𝜒 ∧ 𝜂 ) ↔ ( 𝜒 ∧ ( 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ) ) |
13 |
11 12
|
bitr4i |
⊢ ( ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ( 𝜒 ∧ 𝜂 ) ) |
14 |
13
|
3exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) ) ↔ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝜂 ) ) |
15 |
10 14
|
sylib |
⊢ ( 𝜃 → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝜂 ) ) |
16 |
3 7 5
|
bnj986 |
⊢ ( 𝜒 → ∃ 𝑚 ∃ 𝑝 𝜏 ) |
17 |
16
|
ancli |
⊢ ( 𝜒 → ( 𝜒 ∧ ∃ 𝑚 ∃ 𝑝 𝜏 ) ) |
18 |
|
19.42vv |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ) ↔ ( 𝜒 ∧ ∃ 𝑚 ∃ 𝑝 𝜏 ) ) |
19 |
17 18
|
sylibr |
⊢ ( 𝜒 → ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ) ) |
20 |
19
|
anim1i |
⊢ ( ( 𝜒 ∧ 𝜂 ) → ( ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ) ∧ 𝜂 ) ) |
21 |
|
19.41vv |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( ( 𝜒 ∧ 𝜏 ) ∧ 𝜂 ) ↔ ( ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ) ∧ 𝜂 ) ) |
22 |
20 21
|
sylibr |
⊢ ( ( 𝜒 ∧ 𝜂 ) → ∃ 𝑚 ∃ 𝑝 ( ( 𝜒 ∧ 𝜏 ) ∧ 𝜂 ) ) |
23 |
|
df-3an |
⊢ ( ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ( ( 𝜒 ∧ 𝜏 ) ∧ 𝜂 ) ) |
24 |
23
|
2exbii |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ∃ 𝑚 ∃ 𝑝 ( ( 𝜒 ∧ 𝜏 ) ∧ 𝜂 ) ) |
25 |
22 24
|
sylibr |
⊢ ( ( 𝜒 ∧ 𝜂 ) → ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) |
26 |
25
|
2eximi |
⊢ ( ∃ 𝑛 ∃ 𝑖 ( 𝜒 ∧ 𝜂 ) → ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) |
27 |
15 26
|
bnj593 |
⊢ ( 𝜃 → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) |
28 |
|
19.37v |
⊢ ( ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
29 |
28
|
exbii |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ∃ 𝑚 ( 𝜃 → ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
30 |
29
|
bnj132 |
⊢ ( ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
31 |
30
|
exbii |
⊢ ( ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ∃ 𝑖 ( 𝜃 → ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
32 |
31
|
bnj132 |
⊢ ( ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
33 |
32
|
exbii |
⊢ ( ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ∃ 𝑛 ( 𝜃 → ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
34 |
33
|
bnj132 |
⊢ ( ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
35 |
34
|
exbii |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ∃ 𝑓 ( 𝜃 → ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
36 |
35
|
bnj132 |
⊢ ( ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ↔ ( 𝜃 → ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) ) |
37 |
27 36
|
mpbir |
⊢ ∃ 𝑓 ∃ 𝑛 ∃ 𝑖 ∃ 𝑚 ∃ 𝑝 ( 𝜃 → ( 𝜒 ∧ 𝜏 ∧ 𝜂 ) ) |