Step |
Hyp |
Ref |
Expression |
1 |
|
bnj998.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
2 |
|
bnj998.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
3 |
|
bnj998.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
4 |
|
bnj998.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
5 |
|
bnj998.5 |
⊢ ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
6 |
|
bnj998.7 |
⊢ ( 𝜑′ ↔ [ 𝑝 / 𝑛 ] 𝜑 ) |
7 |
|
bnj998.8 |
⊢ ( 𝜓′ ↔ [ 𝑝 / 𝑛 ] 𝜓 ) |
8 |
|
bnj998.9 |
⊢ ( 𝜒′ ↔ [ 𝑝 / 𝑛 ] 𝜒 ) |
9 |
|
bnj998.10 |
⊢ ( 𝜑″ ↔ [ 𝐺 / 𝑓 ] 𝜑′ ) |
10 |
|
bnj998.11 |
⊢ ( 𝜓″ ↔ [ 𝐺 / 𝑓 ] 𝜓′ ) |
11 |
|
bnj998.12 |
⊢ ( 𝜒″ ↔ [ 𝐺 / 𝑓 ] 𝜒′ ) |
12 |
|
bnj998.13 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
13 |
|
bnj998.14 |
⊢ 𝐵 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
14 |
|
bnj998.15 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
15 |
|
bnj998.16 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑛 , 𝐶 〉 } ) |
16 |
|
bnj253 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
17 |
16
|
simp1bi |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
18 |
4 17
|
sylbi |
⊢ ( 𝜃 → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
19 |
18
|
bnj705 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
20 |
|
bnj643 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝜒 ) |
21 |
|
3simpc |
⊢ ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) → ( 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
22 |
5 21
|
sylbi |
⊢ ( 𝜏 → ( 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
23 |
22
|
bnj707 |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
24 |
|
bnj255 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝜒 ∧ ( 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) ) |
25 |
19 20 23 24
|
syl3anbrc |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) |
26 |
|
bnj252 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) ) |
28 |
|
biid |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
29 |
|
biid |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛 ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛 ) ) |
30 |
1 2 3 6 7 8 9 10 11 12 13 14 15 28 29
|
bnj910 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛 ) ) → 𝜒″ ) |
31 |
27 30
|
syl |
⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) → 𝜒″ ) |