Metamath Proof Explorer


Theorem bnj998

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj998.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj998.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj998.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj998.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj998.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
bnj998.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
bnj998.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
bnj998.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
bnj998.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
bnj998.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
bnj998.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
bnj998.13 𝐷 = ( ω ∖ { ∅ } )
bnj998.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj998.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj998.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
Assertion bnj998 ( ( 𝜃𝜒𝜏𝜂 ) → 𝜒″ )

Proof

Step Hyp Ref Expression
1 bnj998.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj998.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj998.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj998.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
5 bnj998.5 ( 𝜏 ↔ ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
6 bnj998.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
7 bnj998.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
8 bnj998.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
9 bnj998.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
10 bnj998.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
11 bnj998.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
12 bnj998.13 𝐷 = ( ω ∖ { ∅ } )
13 bnj998.14 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
14 bnj998.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
15 bnj998.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
16 bnj253 ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
17 16 simp1bi ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl ( 𝑋 , 𝐴 , 𝑅 ) ∧ 𝑧 ∈ pred ( 𝑦 , 𝐴 , 𝑅 ) ) → ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
18 4 17 sylbi ( 𝜃 → ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
19 18 bnj705 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
20 bnj643 ( ( 𝜃𝜒𝜏𝜂 ) → 𝜒 )
21 3simpc ( ( 𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) → ( 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
22 5 21 sylbi ( 𝜏 → ( 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
23 22 bnj707 ( ( 𝜃𝜒𝜏𝜂 ) → ( 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
24 bnj255 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝜒 ∧ ( 𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) )
25 19 20 23 24 syl3anbrc ( ( 𝜃𝜒𝜏𝜂 ) → ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) )
26 bnj252 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) )
27 25 26 sylib ( ( 𝜃𝜒𝜏𝜂 ) → ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) )
28 biid ( ( 𝑓 Fn 𝑛𝜑𝜓 ) ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
29 biid ( ( 𝑛𝐷𝑝 = suc 𝑛𝑚𝑛 ) ↔ ( 𝑛𝐷𝑝 = suc 𝑛𝑚𝑛 ) )
30 1 2 3 6 7 8 9 10 11 12 13 14 15 28 29 bnj910 ( ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ ( 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛 ) ) → 𝜒″ )
31 27 30 syl ( ( 𝜃𝜒𝜏𝜂 ) → 𝜒″ )