| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj998.1 | 
							⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj998.2 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj998.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj998.4 | 
							⊢ ( 𝜃  ↔  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj998.5 | 
							⊢ ( 𝜏  ↔  ( 𝑚  ∈  ω  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj998.7 | 
							⊢ ( 𝜑′  ↔  [ 𝑝  /  𝑛 ] 𝜑 )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj998.8 | 
							⊢ ( 𝜓′  ↔  [ 𝑝  /  𝑛 ] 𝜓 )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj998.9 | 
							⊢ ( 𝜒′  ↔  [ 𝑝  /  𝑛 ] 𝜒 )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj998.10 | 
							⊢ ( 𝜑″  ↔  [ 𝐺  /  𝑓 ] 𝜑′ )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj998.11 | 
							⊢ ( 𝜓″  ↔  [ 𝐺  /  𝑓 ] 𝜓′ )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj998.12 | 
							⊢ ( 𝜒″  ↔  [ 𝐺  /  𝑓 ] 𝜒′ )  | 
						
						
							| 12 | 
							
								
							 | 
							bnj998.13 | 
							⊢ 𝐷  =  ( ω  ∖  { ∅ } )  | 
						
						
							| 13 | 
							
								
							 | 
							bnj998.14 | 
							⊢ 𝐵  =  { 𝑓  ∣  ∃ 𝑛  ∈  𝐷 ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) }  | 
						
						
							| 14 | 
							
								
							 | 
							bnj998.15 | 
							⊢ 𝐶  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 15 | 
							
								
							 | 
							bnj998.16 | 
							⊢ 𝐺  =  ( 𝑓  ∪  { 〈 𝑛 ,  𝐶 〉 } )  | 
						
						
							| 16 | 
							
								
							 | 
							bnj253 | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simp1bi | 
							⊢ ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴  ∧  𝑦  ∈   trCl ( 𝑋 ,  𝐴 ,  𝑅 )  ∧  𝑧  ∈   pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  →  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 ) )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							sylbi | 
							⊢ ( 𝜃  →  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							bnj705 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							bnj643 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝜒 )  | 
						
						
							| 21 | 
							
								
							 | 
							3simpc | 
							⊢ ( ( 𝑚  ∈  ω  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 )  →  ( 𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 22 | 
							
								5 21
							 | 
							sylbi | 
							⊢ ( 𝜏  →  ( 𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							bnj707 | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( 𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							bnj255 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝜒  ∧  ( 𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) ) )  | 
						
						
							| 25 | 
							
								19 20 23 24
							 | 
							syl3anbrc | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							bnj252 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 )  ↔  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) ) )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							sylib | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 )  ↔  ( 𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							biid | 
							⊢ ( ( 𝑛  ∈  𝐷  ∧  𝑝  =  suc  𝑛  ∧  𝑚  ∈  𝑛 )  ↔  ( 𝑛  ∈  𝐷  ∧  𝑝  =  suc  𝑛  ∧  𝑚  ∈  𝑛 ) )  | 
						
						
							| 30 | 
							
								1 2 3 6 7 8 9 10 11 12 13 14 15 28 29
							 | 
							bnj910 | 
							⊢ ( ( ( 𝑅  FrSe  𝐴  ∧  𝑋  ∈  𝐴 )  ∧  ( 𝜒  ∧  𝑛  =  suc  𝑚  ∧  𝑝  =  suc  𝑛 ) )  →  𝜒″ )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							syl | 
							⊢ ( ( 𝜃  ∧  𝜒  ∧  𝜏  ∧  𝜂 )  →  𝜒″ )  |