Metamath Proof Explorer


Theorem bnj999

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj999.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj999.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj999.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj999.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
bnj999.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
bnj999.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
bnj999.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
bnj999.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
bnj999.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
bnj999.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
bnj999.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
Assertion bnj999 ( ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )

Proof

Step Hyp Ref Expression
1 bnj999.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj999.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj999.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj999.7 ( 𝜑′[ 𝑝 / 𝑛 ] 𝜑 )
5 bnj999.8 ( 𝜓′[ 𝑝 / 𝑛 ] 𝜓 )
6 bnj999.9 ( 𝜒′[ 𝑝 / 𝑛 ] 𝜒 )
7 bnj999.10 ( 𝜑″[ 𝐺 / 𝑓 ] 𝜑′ )
8 bnj999.11 ( 𝜓″[ 𝐺 / 𝑓 ] 𝜓′ )
9 bnj999.12 ( 𝜒″[ 𝐺 / 𝑓 ] 𝜒′ )
10 bnj999.15 𝐶 = 𝑦 ∈ ( 𝑓𝑚 ) pred ( 𝑦 , 𝐴 , 𝑅 )
11 bnj999.16 𝐺 = ( 𝑓 ∪ { ⟨ 𝑛 , 𝐶 ⟩ } )
12 vex 𝑝 ∈ V
13 3 4 5 6 12 bnj919 ( 𝜒′ ↔ ( 𝑝𝐷𝑓 Fn 𝑝𝜑′𝜓′ ) )
14 11 bnj918 𝐺 ∈ V
15 13 7 8 9 14 bnj976 ( 𝜒″ ↔ ( 𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″ ) )
16 15 bnj1254 ( 𝜒″𝜓″ )
17 16 anim1i ( ( 𝜒″ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) ) → ( 𝜓″ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) ) )
18 bnj252 ( ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) ↔ ( 𝜒″ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) ) )
19 bnj252 ( ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) ↔ ( 𝜓″ ∧ ( 𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) ) )
20 17 18 19 3imtr4i ( ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) → ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) )
21 ssiun2 ( 𝑦 ∈ ( 𝐺𝑖 ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
22 21 bnj708 ( ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
23 3simpa ( ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) → ( 𝜓″𝑖 ∈ ω ) )
24 23 ancomd ( ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) → ( 𝑖 ∈ ω ∧ 𝜓″ ) )
25 simp3 ( ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) → suc 𝑖𝑝 )
26 2 5 12 bnj539 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑝 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
27 26 8 10 11 bnj965 ( 𝜓″ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑝 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
28 27 bnj228 ( ( 𝑖 ∈ ω ∧ 𝜓″ ) → ( suc 𝑖𝑝 → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
29 24 25 28 sylc ( ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝 ) → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
30 29 bnj721 ( ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) → ( 𝐺 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝐺𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
31 22 30 sseqtrrd ( ( 𝜓″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )
32 20 31 syl ( ( 𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ ( 𝐺𝑖 ) ) → pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ ( 𝐺 ‘ suc 𝑖 ) )