| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bnj999.1 | 
							⊢ ( 𝜑  ↔  ( 𝑓 ‘ ∅ )  =   pred ( 𝑋 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bnj999.2 | 
							⊢ ( 𝜓  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑛  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bnj999.3 | 
							⊢ ( 𝜒  ↔  ( 𝑛  ∈  𝐷  ∧  𝑓  Fn  𝑛  ∧  𝜑  ∧  𝜓 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bnj999.7 | 
							⊢ ( 𝜑′  ↔  [ 𝑝  /  𝑛 ] 𝜑 )  | 
						
						
							| 5 | 
							
								
							 | 
							bnj999.8 | 
							⊢ ( 𝜓′  ↔  [ 𝑝  /  𝑛 ] 𝜓 )  | 
						
						
							| 6 | 
							
								
							 | 
							bnj999.9 | 
							⊢ ( 𝜒′  ↔  [ 𝑝  /  𝑛 ] 𝜒 )  | 
						
						
							| 7 | 
							
								
							 | 
							bnj999.10 | 
							⊢ ( 𝜑″  ↔  [ 𝐺  /  𝑓 ] 𝜑′ )  | 
						
						
							| 8 | 
							
								
							 | 
							bnj999.11 | 
							⊢ ( 𝜓″  ↔  [ 𝐺  /  𝑓 ] 𝜓′ )  | 
						
						
							| 9 | 
							
								
							 | 
							bnj999.12 | 
							⊢ ( 𝜒″  ↔  [ 𝐺  /  𝑓 ] 𝜒′ )  | 
						
						
							| 10 | 
							
								
							 | 
							bnj999.15 | 
							⊢ 𝐶  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑚 )  pred ( 𝑦 ,  𝐴 ,  𝑅 )  | 
						
						
							| 11 | 
							
								
							 | 
							bnj999.16 | 
							⊢ 𝐺  =  ( 𝑓  ∪  { 〈 𝑛 ,  𝐶 〉 } )  | 
						
						
							| 12 | 
							
								
							 | 
							vex | 
							⊢ 𝑝  ∈  V  | 
						
						
							| 13 | 
							
								3 4 5 6 12
							 | 
							bnj919 | 
							⊢ ( 𝜒′  ↔  ( 𝑝  ∈  𝐷  ∧  𝑓  Fn  𝑝  ∧  𝜑′  ∧  𝜓′ ) )  | 
						
						
							| 14 | 
							
								11
							 | 
							bnj918 | 
							⊢ 𝐺  ∈  V  | 
						
						
							| 15 | 
							
								13 7 8 9 14
							 | 
							bnj976 | 
							⊢ ( 𝜒″  ↔  ( 𝑝  ∈  𝐷  ∧  𝐺  Fn  𝑝  ∧  𝜑″  ∧  𝜓″ ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							bnj1254 | 
							⊢ ( 𝜒″  →  𝜓″ )  | 
						
						
							| 17 | 
							
								16
							 | 
							anim1i | 
							⊢ ( ( 𝜒″  ∧  ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) ) )  →  ( 𝜓″  ∧  ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							bnj252 | 
							⊢ ( ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  ↔  ( 𝜒″  ∧  ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							bnj252 | 
							⊢ ( ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  ↔  ( 𝜓″  ∧  ( 𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) ) ) )  | 
						
						
							| 20 | 
							
								17 18 19
							 | 
							3imtr4i | 
							⊢ ( ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →  ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							ssiun2 | 
							⊢ ( 𝑦  ∈  ( 𝐺 ‘ 𝑖 )  →   pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							bnj708 | 
							⊢ ( ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →   pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							3simpa | 
							⊢ ( ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝 )  →  ( 𝜓″  ∧  𝑖  ∈  ω ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							ancomd | 
							⊢ ( ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝 )  →  ( 𝑖  ∈  ω  ∧  𝜓″ ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝 )  →  suc  𝑖  ∈  𝑝 )  | 
						
						
							| 26 | 
							
								2 5 12
							 | 
							bnj539 | 
							⊢ ( 𝜓′  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑝  →  ( 𝑓 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝑓 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 27 | 
							
								26 8 10 11
							 | 
							bnj965 | 
							⊢ ( 𝜓″  ↔  ∀ 𝑖  ∈  ω ( suc  𝑖  ∈  𝑝  →  ( 𝐺 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							bnj228 | 
							⊢ ( ( 𝑖  ∈  ω  ∧  𝜓″ )  →  ( suc  𝑖  ∈  𝑝  →  ( 𝐺 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) ) )  | 
						
						
							| 29 | 
							
								24 25 28
							 | 
							sylc | 
							⊢ ( ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝 )  →  ( 𝐺 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							bnj721 | 
							⊢ ( ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →  ( 𝐺 ‘ suc  𝑖 )  =  ∪  𝑦  ∈  ( 𝐺 ‘ 𝑖 )  pred ( 𝑦 ,  𝐴 ,  𝑅 ) )  | 
						
						
							| 31 | 
							
								22 30
							 | 
							sseqtrrd | 
							⊢ ( ( 𝜓″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →   pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  ( 𝐺 ‘ suc  𝑖 ) )  | 
						
						
							| 32 | 
							
								20 31
							 | 
							syl | 
							⊢ ( ( 𝜒″  ∧  𝑖  ∈  ω  ∧  suc  𝑖  ∈  𝑝  ∧  𝑦  ∈  ( 𝐺 ‘ 𝑖 ) )  →   pred ( 𝑦 ,  𝐴 ,  𝑅 )  ⊆  ( 𝐺 ‘ suc  𝑖 ) )  |