Metamath Proof Explorer


Theorem bnngp

Description: A Banach space is a normed group. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion bnngp ( 𝑊 ∈ Ban → 𝑊 ∈ NrmGrp )

Proof

Step Hyp Ref Expression
1 bnnlm ( 𝑊 ∈ Ban → 𝑊 ∈ NrmMod )
2 nlmngp ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp )
3 1 2 syl ( 𝑊 ∈ Ban → 𝑊 ∈ NrmGrp )