Metamath Proof Explorer


Theorem bnnvc

Description: A Banach space is a normed vector space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion bnnvc ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec )

Proof

Step Hyp Ref Expression
1 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
2 1 isbn ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) )
3 2 simp1bi ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec )