Description: A Banach space is a normed vector space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bnnvc | ⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 2 | 1 | isbn | ⊢ ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ ( Scalar ‘ 𝑊 ) ∈ CMetSp ) ) | 
| 3 | 2 | simp1bi | ⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ NrmVec ) |