Metamath Proof Explorer


Theorem bnrel

Description: The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007) (New usage is discouraged.)

Ref Expression
Assertion bnrel Rel CBan

Proof

Step Hyp Ref Expression
1 bnnv ( 𝑥 ∈ CBan → 𝑥 ∈ NrmCVec )
2 1 ssriv CBan ⊆ NrmCVec
3 nvrel Rel NrmCVec
4 relss ( CBan ⊆ NrmCVec → ( Rel NrmCVec → Rel CBan ) )
5 2 3 4 mp2 Rel CBan