Metamath Proof Explorer


Theorem bnsca

Description: The scalar field of a Banach space is complete. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis isbn.1 𝐹 = ( Scalar ‘ 𝑊 )
Assertion bnsca ( 𝑊 ∈ Ban → 𝐹 ∈ CMetSp )

Proof

Step Hyp Ref Expression
1 isbn.1 𝐹 = ( Scalar ‘ 𝑊 )
2 1 isbn ( 𝑊 ∈ Ban ↔ ( 𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp ) )
3 2 simp3bi ( 𝑊 ∈ Ban → 𝐹 ∈ CMetSp )