| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnsscmcl.x |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
bnsscmcl.d |
⊢ 𝐷 = ( IndMet ‘ 𝑈 ) |
| 3 |
|
bnsscmcl.j |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 4 |
|
bnsscmcl.h |
⊢ 𝐻 = ( SubSp ‘ 𝑈 ) |
| 5 |
|
bnsscmcl.y |
⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) |
| 6 |
|
bnnv |
⊢ ( 𝑈 ∈ CBan → 𝑈 ∈ NrmCVec ) |
| 7 |
4
|
sspnv |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 8 |
6 7
|
sylan |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 9 |
|
eqid |
⊢ ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 ) |
| 10 |
5 9
|
iscbn |
⊢ ( 𝑊 ∈ CBan ↔ ( 𝑊 ∈ NrmCVec ∧ ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝑌 ) ) ) |
| 11 |
10
|
baib |
⊢ ( 𝑊 ∈ NrmCVec → ( 𝑊 ∈ CBan ↔ ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝑌 ) ) ) |
| 12 |
8 11
|
syl |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( 𝑊 ∈ CBan ↔ ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝑌 ) ) ) |
| 13 |
5 2 9 4
|
sspims |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( IndMet ‘ 𝑊 ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 14 |
6 13
|
sylan |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( IndMet ‘ 𝑊 ) = ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 15 |
14
|
eleq1d |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( ( IndMet ‘ 𝑊 ) ∈ ( CMet ‘ 𝑌 ) ↔ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ) ) |
| 16 |
1 2
|
cbncms |
⊢ ( 𝑈 ∈ CBan → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 18 |
3
|
cmetss |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( CMet ‘ 𝑌 ) ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 20 |
12 15 19
|
3bitrd |
⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻 ) → ( 𝑊 ∈ CBan ↔ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ) |