Step |
Hyp |
Ref |
Expression |
1 |
|
eldifi |
⊢ ( 𝑧 ∈ ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) → 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) → 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) |
3 |
|
sseq1 |
⊢ ( ( 𝐵 ∖ 𝐶 ) = if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) → ( ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 ↔ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 ) ) |
4 |
|
sseq1 |
⊢ ( 𝐵 = if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) → ( 𝐵 ⊆ 𝐵 ↔ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 ) ) |
5 |
|
difss |
⊢ ( 𝐵 ∖ 𝐶 ) ⊆ 𝐵 |
6 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
7 |
3 4 5 6
|
keephyp |
⊢ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 |
8 |
7
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 |
9 |
|
ss2ixp |
⊢ ( ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ 𝐵 → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ X 𝑘 ∈ 𝐴 𝐵 ) |
10 |
8 9
|
mp1i |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ⊆ X 𝑘 ∈ 𝐴 𝐵 ) |
11 |
10
|
sselda |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) → 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) |
12 |
|
vex |
⊢ 𝑧 ∈ V |
13 |
12
|
elixp |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) |
14 |
|
ixpfn |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → 𝑧 Fn 𝐴 ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → 𝑧 Fn 𝐴 ) |
16 |
15
|
biantrurd |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) ) |
17 |
13 16
|
bitr4id |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) |
18 |
17
|
notbid |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) |
19 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) |
20 |
|
eleq2 |
⊢ ( ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) = if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) → ( ( 𝑧 ‘ 𝑚 ) ∈ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ↔ ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
21 |
|
eleq2 |
⊢ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) → ( ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ↔ ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
22 |
|
eleq2 |
⊢ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐶 = if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) → ( ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ↔ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) |
23 |
|
eleq2 |
⊢ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) → ( ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ↔ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) |
24 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
25 |
12
|
elixp |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ) ) |
26 |
25
|
simprbi |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ) |
27 |
|
nfv |
⊢ Ⅎ 𝑙 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 |
28 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 |
29 |
28
|
nfel2 |
⊢ Ⅎ 𝑘 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 |
30 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝑧 ‘ 𝑘 ) = ( 𝑧 ‘ 𝑙 ) ) |
31 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑙 → 𝐵 = ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
32 |
30 31
|
eleq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
33 |
27 29 32
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ↔ ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
34 |
26 33
|
sylib |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
35 |
|
fveq2 |
⊢ ( 𝑙 = 𝑋 → ( 𝑧 ‘ 𝑙 ) = ( 𝑧 ‘ 𝑋 ) ) |
36 |
|
csbeq1 |
⊢ ( 𝑙 = 𝑋 → ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) |
37 |
35 36
|
eleq12d |
⊢ ( 𝑙 = 𝑋 → ( ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ↔ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) ) |
38 |
37
|
rspcva |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) |
39 |
24 34 38
|
syl2an |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) |
40 |
|
neldif |
⊢ ( ( ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
41 |
39 40
|
sylan |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
42 |
41
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
43 |
|
csbeq1 |
⊢ ( 𝑙 = 𝑋 → ⦋ 𝑙 / 𝑘 ⦌ 𝐶 = ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
44 |
35 43
|
eleq12d |
⊢ ( 𝑙 = 𝑋 → ( ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ↔ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
45 |
42 44
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) → ( 𝑙 = 𝑋 → ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) ) |
46 |
45
|
imp |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) ∧ 𝑙 = 𝑋 ) → ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) |
47 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
48 |
47
|
r19.21bi |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
49 |
48
|
adantr |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) ∧ ¬ 𝑙 = 𝑋 ) → ( 𝑧 ‘ 𝑙 ) ∈ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
50 |
22 23 46 49
|
ifbothda |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ∧ 𝑙 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
51 |
50
|
ralrimiva |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
52 |
|
dfral2 |
⊢ ( ∀ 𝑙 ∈ 𝐴 ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ↔ ¬ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
53 |
51 52
|
sylib |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) → ¬ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
54 |
53
|
ex |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) → ¬ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) |
55 |
54
|
con4d |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ) |
56 |
55
|
imp |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
57 |
56
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑚 = 𝑋 → ( 𝑧 ‘ 𝑚 ) = ( 𝑧 ‘ 𝑋 ) ) |
59 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑋 → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ) |
60 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑋 → ⦋ 𝑚 / 𝑘 ⦌ 𝐶 = ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
61 |
59 60
|
difeq12d |
⊢ ( 𝑚 = 𝑋 → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) = ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
62 |
58 61
|
eleq12d |
⊢ ( 𝑚 = 𝑋 → ( ( 𝑧 ‘ 𝑚 ) ∈ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ↔ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ) |
63 |
57 62
|
syl5ibrcom |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑚 = 𝑋 → ( 𝑧 ‘ 𝑚 ) ∈ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) ) |
64 |
63
|
imp |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) ∧ 𝑚 = 𝑋 ) → ( 𝑧 ‘ 𝑚 ) ∈ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
65 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 |
66 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
67 |
66
|
nfel2 |
⊢ Ⅎ 𝑘 ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
68 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑧 ‘ 𝑘 ) = ( 𝑧 ‘ 𝑚 ) ) |
69 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
70 |
68 69
|
eleq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
71 |
65 67 70
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ 𝐵 ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
72 |
26 71
|
sylib |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
73 |
72
|
ad2antlr |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
74 |
73
|
r19.21bi |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
75 |
74
|
adantr |
⊢ ( ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) ∧ ¬ 𝑚 = 𝑋 ) → ( 𝑧 ‘ 𝑚 ) ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
76 |
20 21 64 75
|
ifbothda |
⊢ ( ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
77 |
76
|
ralrimiva |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) → ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
78 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → 𝑋 ∈ 𝐴 ) |
79 |
|
iftrue |
⊢ ( 𝑚 = 𝑋 → if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
80 |
79 61
|
eqtrd |
⊢ ( 𝑚 = 𝑋 → if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
81 |
58 80
|
eleq12d |
⊢ ( 𝑚 = 𝑋 → ( ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) ) |
82 |
81
|
rspcva |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
83 |
78 82
|
sylan |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ( 𝑧 ‘ 𝑋 ) ∈ ( ⦋ 𝑋 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
84 |
83
|
eldifbd |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ¬ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
85 |
|
iftrue |
⊢ ( 𝑙 = 𝑋 → if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) = ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) |
86 |
85 43
|
eqtrd |
⊢ ( 𝑙 = 𝑋 → if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) = ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) |
87 |
35 86
|
eleq12d |
⊢ ( 𝑙 = 𝑋 → ( ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
88 |
87
|
notbid |
⊢ ( 𝑙 = 𝑋 → ( ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ↔ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) ) |
89 |
88
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ¬ ( 𝑧 ‘ 𝑋 ) ∈ ⦋ 𝑋 / 𝑘 ⦌ 𝐶 ) → ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
90 |
78 84 89
|
syl2an2r |
⊢ ( ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) ∧ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
91 |
77 90
|
impbida |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
92 |
|
nfv |
⊢ Ⅎ 𝑙 ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) |
93 |
|
nfv |
⊢ Ⅎ 𝑘 𝑙 = 𝑋 |
94 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐶 |
95 |
93 94 28
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
96 |
95
|
nfel2 |
⊢ Ⅎ 𝑘 ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
97 |
96
|
nfn |
⊢ Ⅎ 𝑘 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
98 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 = 𝑋 ↔ 𝑙 = 𝑋 ) ) |
99 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑙 → 𝐶 = ⦋ 𝑙 / 𝑘 ⦌ 𝐶 ) |
100 |
98 99 31
|
ifbieq12d |
⊢ ( 𝑘 = 𝑙 → if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) = if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
101 |
30 100
|
eleq12d |
⊢ ( 𝑘 = 𝑙 → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) |
102 |
101
|
notbid |
⊢ ( 𝑘 = 𝑙 → ( ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) ) |
103 |
92 97 102
|
cbvrexw |
⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∃ 𝑙 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑙 ) ∈ if ( 𝑙 = 𝑋 , ⦋ 𝑙 / 𝑘 ⦌ 𝐶 , ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) ) |
104 |
|
nfv |
⊢ Ⅎ 𝑚 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) |
105 |
|
nfv |
⊢ Ⅎ 𝑘 𝑚 = 𝑋 |
106 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐶 |
107 |
66 106
|
nfdif |
⊢ Ⅎ 𝑘 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
108 |
105 107 66
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
109 |
108
|
nfel2 |
⊢ Ⅎ 𝑘 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
110 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 = 𝑋 ↔ 𝑚 = 𝑋 ) ) |
111 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑚 → 𝐶 = ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) |
112 |
69 111
|
difeq12d |
⊢ ( 𝑘 = 𝑚 → ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) ) |
113 |
110 112 69
|
ifbieq12d |
⊢ ( 𝑘 = 𝑚 → if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) = if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
114 |
68 113
|
eleq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ↔ ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
115 |
104 109 114
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ↔ ∀ 𝑚 ∈ 𝐴 ( 𝑧 ‘ 𝑚 ) ∈ if ( 𝑚 = 𝑋 , ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∖ ⦋ 𝑚 / 𝑘 ⦌ 𝐶 ) , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
116 |
91 103 115
|
3bitr4g |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∃ 𝑘 ∈ 𝐴 ¬ ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
117 |
19 116
|
bitr3id |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
118 |
18 117
|
bitrd |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
119 |
|
ibar |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 → ( ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ∧ ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) ) |
120 |
119
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ↔ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ∧ ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) ) |
121 |
15
|
biantrurd |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) ) |
122 |
118 120 121
|
3bitr3d |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ∧ ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) ) |
123 |
|
eldif |
⊢ ( 𝑧 ∈ ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ↔ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ∧ ¬ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ) |
124 |
12
|
elixp |
⊢ ( 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ↔ ( 𝑧 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑧 ‘ 𝑘 ) ∈ if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
125 |
122 123 124
|
3bitr4g |
⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ∧ 𝑧 ∈ X 𝑘 ∈ 𝐴 𝐵 ) → ( 𝑧 ∈ ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) ↔ 𝑧 ∈ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) ) |
126 |
2 11 125
|
eqrdav |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → ( X 𝑘 ∈ 𝐴 𝐵 ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , 𝐶 , 𝐵 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑋 , ( 𝐵 ∖ 𝐶 ) , 𝐵 ) ) |