Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑧 Fn 𝐼 ) |
2 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
3 |
2
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
4 |
3
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
5 |
4
|
impr |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
6 |
|
eleq2 |
⊢ ( 𝐴 = if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ↔ ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
7 |
|
eleq2 |
⊢ ( 𝐵 = if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
8 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
9 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
6 7 8 10
|
ifbothda |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
12 |
11
|
ex |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
13 |
12
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
15 |
14
|
impr |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
16 |
1 15
|
jca |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
17 |
16
|
ralrimivw |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
18 |
1 5 17
|
jca31 |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
19 |
|
simprll |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → 𝑧 Fn 𝐼 ) |
20 |
|
simpr |
⊢ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
21 |
20
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
22 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
23 |
|
iftrue |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) = 𝐴 ) |
24 |
23
|
equcoms |
⊢ ( 𝑦 = 𝑥 → if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) = 𝐴 ) |
25 |
24
|
eleq2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
26 |
25
|
rspcva |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
27 |
26
|
ralimiaa |
⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
28 |
22 27
|
sylbi |
⊢ ( ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
29 |
21 28
|
syl |
⊢ ( ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
30 |
29
|
ad2antll |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
31 |
19 30
|
jca |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
32 |
18 31
|
impbida |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) ) |
33 |
|
vex |
⊢ 𝑧 ∈ V |
34 |
33
|
elixp |
⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐴 ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
35 |
|
elin |
⊢ ( 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
36 |
33
|
elixp |
⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
37 |
|
eliin |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
38 |
37
|
elv |
⊢ ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
39 |
33
|
elixp |
⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
40 |
39
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
41 |
38 40
|
bitri |
⊢ ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
42 |
36 41
|
anbi12i |
⊢ ( ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
43 |
35 42
|
bitri |
⊢ ( 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
44 |
32 34 43
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐴 ↔ 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
45 |
44
|
eqrdv |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → X 𝑥 ∈ 𝐼 𝐴 = ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |