| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → 𝑧 Fn 𝐼 ) |
| 2 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 3 |
2
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 5 |
4
|
impr |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
| 6 |
|
eleq2 |
⊢ ( 𝐴 = if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ↔ ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 7 |
|
eleq2 |
⊢ ( 𝐵 = if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 9 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ∧ ¬ 𝑥 = 𝑦 ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
| 11 |
6 7 8 10
|
ifbothda |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 12 |
11
|
ex |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 13 |
12
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ 𝑧 Fn 𝐼 ) → ( ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 15 |
14
|
impr |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 16 |
1 15
|
jca |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 17 |
16
|
ralrimivw |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 18 |
1 5 17
|
jca31 |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) → ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
| 19 |
|
simprll |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → 𝑧 Fn 𝐼 ) |
| 20 |
|
simpr |
⊢ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 21 |
20
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 22 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 23 |
|
iftrue |
⊢ ( 𝑥 = 𝑦 → if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) = 𝐴 ) |
| 24 |
23
|
equcoms |
⊢ ( 𝑦 = 𝑥 → if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) = 𝐴 ) |
| 25 |
24
|
eleq2d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 26 |
25
|
rspcva |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 27 |
26
|
ralimiaa |
⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 28 |
22 27
|
sylbi |
⊢ ( ∀ 𝑦 ∈ 𝐼 ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 29 |
21 28
|
syl |
⊢ ( ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 30 |
29
|
ad2antll |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) |
| 31 |
19 30
|
jca |
⊢ ( ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 ∧ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) → ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 32 |
18 31
|
impbida |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) ) |
| 33 |
|
vex |
⊢ 𝑧 ∈ V |
| 34 |
33
|
elixp |
⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐴 ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐴 ) ) |
| 35 |
|
elin |
⊢ ( 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 36 |
33
|
elixp |
⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 37 |
|
eliin |
⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 38 |
37
|
elv |
⊢ ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) |
| 39 |
33
|
elixp |
⊢ ( 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 40 |
39
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐼 𝑧 ∈ X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 41 |
38 40
|
bitri |
⊢ ( 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ↔ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |
| 42 |
36 41
|
anbi12i |
⊢ ( ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐵 ∧ 𝑧 ∈ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
| 43 |
35 42
|
bitri |
⊢ ( 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ↔ ( ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐼 ( 𝑧 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑧 ‘ 𝑥 ) ∈ if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
| 44 |
32 34 43
|
3bitr4g |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → ( 𝑧 ∈ X 𝑥 ∈ 𝐼 𝐴 ↔ 𝑧 ∈ ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) ) |
| 45 |
44
|
eqrdv |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝐴 ⊆ 𝐵 → X 𝑥 ∈ 𝐼 𝐴 = ( X 𝑥 ∈ 𝐼 𝐵 ∩ ∩ 𝑦 ∈ 𝐼 X 𝑥 ∈ 𝐼 if ( 𝑥 = 𝑦 , 𝐴 , 𝐵 ) ) ) |