Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 BernPoly 𝑋 ) = ( 𝑘 BernPoly 𝑋 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 BernPoly 𝑋 ) ∈ ℂ ↔ ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑋 ∈ ℂ → ( 𝑛 BernPoly 𝑋 ) ∈ ℂ ) ↔ ( 𝑋 ∈ ℂ → ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 BernPoly 𝑋 ) = ( 𝑁 BernPoly 𝑋 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 BernPoly 𝑋 ) ∈ ℂ ↔ ( 𝑁 BernPoly 𝑋 ) ∈ ℂ ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑋 ∈ ℂ → ( 𝑛 BernPoly 𝑋 ) ∈ ℂ ) ↔ ( 𝑋 ∈ ℂ → ( 𝑁 BernPoly 𝑋 ) ∈ ℂ ) ) ) |
7 |
|
r19.21v |
⊢ ( ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑋 ∈ ℂ → ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ↔ ( 𝑋 ∈ ℂ → ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ) |
8 |
|
bpolyval |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ) → ( 𝑛 BernPoly 𝑋 ) = ( ( 𝑋 ↑ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( ( 𝑛 C 𝑚 ) · ( ( 𝑚 BernPoly 𝑋 ) / ( ( 𝑛 − 𝑚 ) + 1 ) ) ) ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( 𝑛 BernPoly 𝑋 ) = ( ( 𝑋 ↑ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( ( 𝑛 C 𝑚 ) · ( ( 𝑚 BernPoly 𝑋 ) / ( ( 𝑛 − 𝑚 ) + 1 ) ) ) ) ) |
10 |
|
simp2 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → 𝑋 ∈ ℂ ) |
11 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → 𝑛 ∈ ℕ0 ) |
12 |
10 11
|
expcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) |
13 |
|
fzfid |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( 0 ... ( 𝑛 − 1 ) ) ∈ Fin ) |
14 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) → 𝑚 ∈ ℤ ) |
15 |
|
bccl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ℤ ) → ( 𝑛 C 𝑚 ) ∈ ℕ0 ) |
16 |
11 14 15
|
syl2an |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 C 𝑚 ) ∈ ℕ0 ) |
17 |
16
|
nn0cnd |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝑛 C 𝑚 ) ∈ ℂ ) |
18 |
|
oveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 BernPoly 𝑋 ) = ( 𝑚 BernPoly 𝑋 ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ↔ ( 𝑚 BernPoly 𝑋 ) ∈ ℂ ) ) |
20 |
19
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝑚 BernPoly 𝑋 ) ∈ ℂ ) |
21 |
20
|
3ad2antl3 |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( 𝑚 BernPoly 𝑋 ) ∈ ℂ ) |
22 |
|
fzssp1 |
⊢ ( 0 ... ( 𝑛 − 1 ) ) ⊆ ( 0 ... ( ( 𝑛 − 1 ) + 1 ) ) |
23 |
11
|
nn0cnd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → 𝑛 ∈ ℂ ) |
24 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
25 |
|
npcan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
26 |
23 24 25
|
sylancl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( 0 ... ( ( 𝑛 − 1 ) + 1 ) ) = ( 0 ... 𝑛 ) ) |
28 |
22 27
|
sseqtrid |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( 0 ... ( 𝑛 − 1 ) ) ⊆ ( 0 ... 𝑛 ) ) |
29 |
28
|
sselda |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → 𝑚 ∈ ( 0 ... 𝑛 ) ) |
30 |
|
fznn0sub |
⊢ ( 𝑚 ∈ ( 0 ... 𝑛 ) → ( 𝑛 − 𝑚 ) ∈ ℕ0 ) |
31 |
|
nn0p1nn |
⊢ ( ( 𝑛 − 𝑚 ) ∈ ℕ0 → ( ( 𝑛 − 𝑚 ) + 1 ) ∈ ℕ ) |
32 |
29 30 31
|
3syl |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( ( 𝑛 − 𝑚 ) + 1 ) ∈ ℕ ) |
33 |
32
|
nncnd |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( ( 𝑛 − 𝑚 ) + 1 ) ∈ ℂ ) |
34 |
32
|
nnne0d |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( ( 𝑛 − 𝑚 ) + 1 ) ≠ 0 ) |
35 |
21 33 34
|
divcld |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( ( 𝑚 BernPoly 𝑋 ) / ( ( 𝑛 − 𝑚 ) + 1 ) ) ∈ ℂ ) |
36 |
17 35
|
mulcld |
⊢ ( ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ) → ( ( 𝑛 C 𝑚 ) · ( ( 𝑚 BernPoly 𝑋 ) / ( ( 𝑛 − 𝑚 ) + 1 ) ) ) ∈ ℂ ) |
37 |
13 36
|
fsumcl |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( ( 𝑛 C 𝑚 ) · ( ( 𝑚 BernPoly 𝑋 ) / ( ( 𝑛 − 𝑚 ) + 1 ) ) ) ∈ ℂ ) |
38 |
12 37
|
subcld |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( ( 𝑋 ↑ 𝑛 ) − Σ 𝑚 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( ( 𝑛 C 𝑚 ) · ( ( 𝑚 BernPoly 𝑋 ) / ( ( 𝑛 − 𝑚 ) + 1 ) ) ) ) ∈ ℂ ) |
39 |
9 38
|
eqeltrd |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ∧ ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( 𝑛 BernPoly 𝑋 ) ∈ ℂ ) |
40 |
39
|
3exp |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑋 ∈ ℂ → ( ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ → ( 𝑛 BernPoly 𝑋 ) ∈ ℂ ) ) ) |
41 |
40
|
a2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑋 ∈ ℂ → ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( 𝑋 ∈ ℂ → ( 𝑛 BernPoly 𝑋 ) ∈ ℂ ) ) ) |
42 |
7 41
|
syl5bi |
⊢ ( 𝑛 ∈ ℕ0 → ( ∀ 𝑘 ∈ ( 0 ... ( 𝑛 − 1 ) ) ( 𝑋 ∈ ℂ → ( 𝑘 BernPoly 𝑋 ) ∈ ℂ ) → ( 𝑋 ∈ ℂ → ( 𝑛 BernPoly 𝑋 ) ∈ ℂ ) ) ) |
43 |
3 6 42
|
nn0sinds |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑋 ∈ ℂ → ( 𝑁 BernPoly 𝑋 ) ∈ ℂ ) ) |
44 |
43
|
imp |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ) → ( 𝑁 BernPoly 𝑋 ) ∈ ℂ ) |