Step |
Hyp |
Ref |
Expression |
1 |
|
bpos1.1 |
⊢ ( ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) → 𝜑 ) |
2 |
|
bpos1.2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑃 ) → 𝜑 ) |
3 |
|
bpos1.3 |
⊢ 𝑃 ∈ ℙ |
4 |
|
bpos1.4 |
⊢ 𝐴 ∈ ℕ0 |
5 |
|
bpos1.5 |
⊢ ( 𝐴 · 2 ) = 𝐵 |
6 |
|
bpos1.6 |
⊢ 𝐴 < 𝑃 |
7 |
|
bpos1.7 |
⊢ ( 𝑃 < 𝐵 ∨ 𝑃 = 𝐵 ) |
8 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
9 |
3 8
|
ax-mp |
⊢ 𝑃 ∈ ℕ |
10 |
9
|
nnzi |
⊢ 𝑃 ∈ ℤ |
11 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑁 ∈ ℤ ) |
12 |
|
eluz |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑃 ) ↔ 𝑃 ≤ 𝑁 ) ) |
13 |
10 11 12
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑃 ) ↔ 𝑃 ≤ 𝑁 ) ) |
14 |
13 2
|
syl6bir |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑃 ≤ 𝑁 → 𝜑 ) ) |
15 |
9
|
nnrei |
⊢ 𝑃 ∈ ℝ |
16 |
15
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑃 ∈ ℝ ) |
17 |
4
|
nn0rei |
⊢ 𝐴 ∈ ℝ |
18 |
|
2re |
⊢ 2 ∈ ℝ |
19 |
17 18
|
remulcli |
⊢ ( 𝐴 · 2 ) ∈ ℝ |
20 |
5 19
|
eqeltrri |
⊢ 𝐵 ∈ ℝ |
21 |
20
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ∈ ℝ ) |
22 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑁 ∈ ℝ ) |
23 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 2 · 𝑁 ) ∈ ℝ ) |
24 |
18 22 23
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 2 · 𝑁 ) ∈ ℝ ) |
25 |
15 20
|
leloei |
⊢ ( 𝑃 ≤ 𝐵 ↔ ( 𝑃 < 𝐵 ∨ 𝑃 = 𝐵 ) ) |
26 |
7 25
|
mpbir |
⊢ 𝑃 ≤ 𝐵 |
27 |
26
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑃 ≤ 𝐵 ) |
28 |
4
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
29 |
|
2cn |
⊢ 2 ∈ ℂ |
30 |
28 29 5
|
mulcomli |
⊢ ( 2 · 𝐴 ) = 𝐵 |
31 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐴 ≤ 𝑁 ) |
32 |
|
2pos |
⊢ 0 < 2 |
33 |
18 32
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
34 |
|
lemul2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐴 ≤ 𝑁 ↔ ( 2 · 𝐴 ) ≤ ( 2 · 𝑁 ) ) ) |
35 |
17 33 34
|
mp3an13 |
⊢ ( 𝑁 ∈ ℝ → ( 𝐴 ≤ 𝑁 ↔ ( 2 · 𝐴 ) ≤ ( 2 · 𝑁 ) ) ) |
36 |
22 35
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 ≤ 𝑁 ↔ ( 2 · 𝐴 ) ≤ ( 2 · 𝑁 ) ) ) |
37 |
31 36
|
mpbid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 2 · 𝐴 ) ≤ ( 2 · 𝑁 ) ) |
38 |
30 37
|
eqbrtrrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝐵 ≤ ( 2 · 𝑁 ) ) |
39 |
16 21 24 27 38
|
letrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝑃 ≤ ( 2 · 𝑁 ) ) |
40 |
39
|
anim2i |
⊢ ( ( 𝑁 < 𝑃 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ( 𝑁 < 𝑃 ∧ 𝑃 ≤ ( 2 · 𝑁 ) ) ) |
41 |
|
breq2 |
⊢ ( 𝑝 = 𝑃 → ( 𝑁 < 𝑝 ↔ 𝑁 < 𝑃 ) ) |
42 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ≤ ( 2 · 𝑁 ) ↔ 𝑃 ≤ ( 2 · 𝑁 ) ) ) |
43 |
41 42
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ↔ ( 𝑁 < 𝑃 ∧ 𝑃 ≤ ( 2 · 𝑁 ) ) ) ) |
44 |
43
|
rspcev |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 < 𝑃 ∧ 𝑃 ≤ ( 2 · 𝑁 ) ) ) → ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ) |
45 |
3 40 44
|
sylancr |
⊢ ( ( 𝑁 < 𝑃 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ) |
46 |
45 1
|
syl |
⊢ ( ( 𝑁 < 𝑃 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) ) → 𝜑 ) |
47 |
46
|
expcom |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑁 < 𝑃 → 𝜑 ) ) |
48 |
|
lelttric |
⊢ ( ( 𝑃 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑃 ≤ 𝑁 ∨ 𝑁 < 𝑃 ) ) |
49 |
15 22 48
|
sylancr |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝑃 ≤ 𝑁 ∨ 𝑁 < 𝑃 ) ) |
50 |
14 47 49
|
mpjaod |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐴 ) → 𝜑 ) |