| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bpos.1 | 
							⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 5 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bpos.2 | 
							⊢ ( 𝜑  →  ¬  ∃ 𝑝  ∈  ℙ ( 𝑁  <  𝑝  ∧  𝑝  ≤  ( 2  ·  𝑁 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bpos.3 | 
							⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ ( 𝑛  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ) ,  1 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bpos.4 | 
							⊢ 𝐾  =  ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bpos.5 | 
							⊢ 𝑀  =  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							2nn | 
							⊢ 2  ∈  ℕ  | 
						
						
							| 7 | 
							
								
							 | 
							5nn | 
							⊢ 5  ∈  ℕ  | 
						
						
							| 8 | 
							
								
							 | 
							eluznn | 
							⊢ ( ( 5  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 5 ) )  →  𝑁  ∈  ℕ )  | 
						
						
							| 9 | 
							
								7 1 8
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ )  | 
						
						
							| 10 | 
							
								
							 | 
							nnmulcl | 
							⊢ ( ( 2  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ·  𝑁 )  ∈  ℕ )  | 
						
						
							| 11 | 
							
								6 9 10
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℕ )  | 
						
						
							| 12 | 
							
								11
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								11
							 | 
							nnrpd | 
							⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℝ+ )  | 
						
						
							| 14 | 
							
								13
							 | 
							rpge0d | 
							⊢ ( 𝜑  →  0  ≤  ( 2  ·  𝑁 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							resqrtcld | 
							⊢ ( 𝜑  →  ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ )  | 
						
						
							| 16 | 
							
								15
							 | 
							flcld | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  ∈  ℤ )  | 
						
						
							| 17 | 
							
								
							 | 
							sqrt9 | 
							⊢ ( √ ‘ 9 )  =  3  | 
						
						
							| 18 | 
							
								
							 | 
							9re | 
							⊢ 9  ∈  ℝ  | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							⊢ ( 𝜑  →  9  ∈  ℝ )  | 
						
						
							| 20 | 
							
								
							 | 
							10re | 
							⊢ ; 1 0  ∈  ℝ  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							⊢ ( 𝜑  →  ; 1 0  ∈  ℝ )  | 
						
						
							| 22 | 
							
								
							 | 
							lep1 | 
							⊢ ( 9  ∈  ℝ  →  9  ≤  ( 9  +  1 ) )  | 
						
						
							| 23 | 
							
								18 22
							 | 
							ax-mp | 
							⊢ 9  ≤  ( 9  +  1 )  | 
						
						
							| 24 | 
							
								
							 | 
							9p1e10 | 
							⊢ ( 9  +  1 )  =  ; 1 0  | 
						
						
							| 25 | 
							
								23 24
							 | 
							breqtri | 
							⊢ 9  ≤  ; 1 0  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							⊢ ( 𝜑  →  9  ≤  ; 1 0 )  | 
						
						
							| 27 | 
							
								
							 | 
							5cn | 
							⊢ 5  ∈  ℂ  | 
						
						
							| 28 | 
							
								
							 | 
							2cn | 
							⊢ 2  ∈  ℂ  | 
						
						
							| 29 | 
							
								
							 | 
							5t2e10 | 
							⊢ ( 5  ·  2 )  =  ; 1 0  | 
						
						
							| 30 | 
							
								27 28 29
							 | 
							mulcomli | 
							⊢ ( 2  ·  5 )  =  ; 1 0  | 
						
						
							| 31 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 5 )  →  5  ≤  𝑁 )  | 
						
						
							| 32 | 
							
								1 31
							 | 
							syl | 
							⊢ ( 𝜑  →  5  ≤  𝑁 )  | 
						
						
							| 33 | 
							
								9
							 | 
							nnred | 
							⊢ ( 𝜑  →  𝑁  ∈  ℝ )  | 
						
						
							| 34 | 
							
								
							 | 
							5re | 
							⊢ 5  ∈  ℝ  | 
						
						
							| 35 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 36 | 
							
								
							 | 
							2pos | 
							⊢ 0  <  2  | 
						
						
							| 37 | 
							
								35 36
							 | 
							pm3.2i | 
							⊢ ( 2  ∈  ℝ  ∧  0  <  2 )  | 
						
						
							| 38 | 
							
								
							 | 
							lemul2 | 
							⊢ ( ( 5  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 5  ≤  𝑁  ↔  ( 2  ·  5 )  ≤  ( 2  ·  𝑁 ) ) )  | 
						
						
							| 39 | 
							
								34 37 38
							 | 
							mp3an13 | 
							⊢ ( 𝑁  ∈  ℝ  →  ( 5  ≤  𝑁  ↔  ( 2  ·  5 )  ≤  ( 2  ·  𝑁 ) ) )  | 
						
						
							| 40 | 
							
								33 39
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 5  ≤  𝑁  ↔  ( 2  ·  5 )  ≤  ( 2  ·  𝑁 ) ) )  | 
						
						
							| 41 | 
							
								32 40
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 2  ·  5 )  ≤  ( 2  ·  𝑁 ) )  | 
						
						
							| 42 | 
							
								30 41
							 | 
							eqbrtrrid | 
							⊢ ( 𝜑  →  ; 1 0  ≤  ( 2  ·  𝑁 ) )  | 
						
						
							| 43 | 
							
								19 21 12 26 42
							 | 
							letrd | 
							⊢ ( 𝜑  →  9  ≤  ( 2  ·  𝑁 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 45 | 
							
								
							 | 
							9pos | 
							⊢ 0  <  9  | 
						
						
							| 46 | 
							
								44 18 45
							 | 
							ltleii | 
							⊢ 0  ≤  9  | 
						
						
							| 47 | 
							
								18 46
							 | 
							pm3.2i | 
							⊢ ( 9  ∈  ℝ  ∧  0  ≤  9 )  | 
						
						
							| 48 | 
							
								13
							 | 
							rprege0d | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 2  ·  𝑁 ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							sqrtle | 
							⊢ ( ( ( 9  ∈  ℝ  ∧  0  ≤  9 )  ∧  ( ( 2  ·  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 2  ·  𝑁 ) ) )  →  ( 9  ≤  ( 2  ·  𝑁 )  ↔  ( √ ‘ 9 )  ≤  ( √ ‘ ( 2  ·  𝑁 ) ) ) )  | 
						
						
							| 50 | 
							
								47 48 49
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 9  ≤  ( 2  ·  𝑁 )  ↔  ( √ ‘ 9 )  ≤  ( √ ‘ ( 2  ·  𝑁 ) ) ) )  | 
						
						
							| 51 | 
							
								43 50
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( √ ‘ 9 )  ≤  ( √ ‘ ( 2  ·  𝑁 ) ) )  | 
						
						
							| 52 | 
							
								17 51
							 | 
							eqbrtrrid | 
							⊢ ( 𝜑  →  3  ≤  ( √ ‘ ( 2  ·  𝑁 ) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							3z | 
							⊢ 3  ∈  ℤ  | 
						
						
							| 54 | 
							
								
							 | 
							flge | 
							⊢ ( ( ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ  ∧  3  ∈  ℤ )  →  ( 3  ≤  ( √ ‘ ( 2  ·  𝑁 ) )  ↔  3  ≤  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) ) ) )  | 
						
						
							| 55 | 
							
								15 53 54
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 3  ≤  ( √ ‘ ( 2  ·  𝑁 ) )  ↔  3  ≤  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) ) ) )  | 
						
						
							| 56 | 
							
								52 55
							 | 
							mpbid | 
							⊢ ( 𝜑  →  3  ≤  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) ) )  | 
						
						
							| 57 | 
							
								53
							 | 
							eluz1i | 
							⊢ ( ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  ∈  ( ℤ≥ ‘ 3 )  ↔  ( ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  ∈  ℤ  ∧  3  ≤  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) ) ) )  | 
						
						
							| 58 | 
							
								16 56 57
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  ∈  ( ℤ≥ ‘ 3 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							3nn | 
							⊢ 3  ∈  ℕ  | 
						
						
							| 60 | 
							
								
							 | 
							nndivre | 
							⊢ ( ( ( 2  ·  𝑁 )  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( ( 2  ·  𝑁 )  /  3 )  ∈  ℝ )  | 
						
						
							| 61 | 
							
								12 59 60
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 )  /  3 )  ∈  ℝ )  | 
						
						
							| 62 | 
							
								
							 | 
							3re | 
							⊢ 3  ∈  ℝ  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							⊢ ( 𝜑  →  3  ∈  ℝ )  | 
						
						
							| 64 | 
							
								13
							 | 
							sqrtgt0d | 
							⊢ ( 𝜑  →  0  <  ( √ ‘ ( 2  ·  𝑁 ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							lemul2 | 
							⊢ ( ( 3  ∈  ℝ  ∧  ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ  ∧  ( ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ  ∧  0  <  ( √ ‘ ( 2  ·  𝑁 ) ) ) )  →  ( 3  ≤  ( √ ‘ ( 2  ·  𝑁 ) )  ↔  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  3 )  ≤  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  ( √ ‘ ( 2  ·  𝑁 ) ) ) ) )  | 
						
						
							| 66 | 
							
								63 15 15 64 65
							 | 
							syl112anc | 
							⊢ ( 𝜑  →  ( 3  ≤  ( √ ‘ ( 2  ·  𝑁 ) )  ↔  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  3 )  ≤  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  ( √ ‘ ( 2  ·  𝑁 ) ) ) ) )  | 
						
						
							| 67 | 
							
								52 66
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  3 )  ≤  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  ( √ ‘ ( 2  ·  𝑁 ) ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							remsqsqrt | 
							⊢ ( ( ( 2  ·  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 2  ·  𝑁 ) )  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  ( √ ‘ ( 2  ·  𝑁 ) ) )  =  ( 2  ·  𝑁 ) )  | 
						
						
							| 69 | 
							
								12 14 68
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  ( √ ‘ ( 2  ·  𝑁 ) ) )  =  ( 2  ·  𝑁 ) )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  3 )  ≤  ( 2  ·  𝑁 ) )  | 
						
						
							| 71 | 
							
								
							 | 
							3pos | 
							⊢ 0  <  3  | 
						
						
							| 72 | 
							
								62 71
							 | 
							pm3.2i | 
							⊢ ( 3  ∈  ℝ  ∧  0  <  3 )  | 
						
						
							| 73 | 
							
								72
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 3  ∈  ℝ  ∧  0  <  3 ) )  | 
						
						
							| 74 | 
							
								
							 | 
							lemuldiv | 
							⊢ ( ( ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ  ∧  ( 2  ·  𝑁 )  ∈  ℝ  ∧  ( 3  ∈  ℝ  ∧  0  <  3 ) )  →  ( ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  3 )  ≤  ( 2  ·  𝑁 )  ↔  ( √ ‘ ( 2  ·  𝑁 ) )  ≤  ( ( 2  ·  𝑁 )  /  3 ) ) )  | 
						
						
							| 75 | 
							
								15 12 73 74
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( ( √ ‘ ( 2  ·  𝑁 ) )  ·  3 )  ≤  ( 2  ·  𝑁 )  ↔  ( √ ‘ ( 2  ·  𝑁 ) )  ≤  ( ( 2  ·  𝑁 )  /  3 ) ) )  | 
						
						
							| 76 | 
							
								70 75
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( √ ‘ ( 2  ·  𝑁 ) )  ≤  ( ( 2  ·  𝑁 )  /  3 ) )  | 
						
						
							| 77 | 
							
								
							 | 
							flword2 | 
							⊢ ( ( ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ  ∧  ( ( 2  ·  𝑁 )  /  3 )  ∈  ℝ  ∧  ( √ ‘ ( 2  ·  𝑁 ) )  ≤  ( ( 2  ·  𝑁 )  /  3 ) )  →  ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) ) ) )  | 
						
						
							| 78 | 
							
								15 61 76 77
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							elfzuzb | 
							⊢ ( ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  ∈  ( 3 ... ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) ) )  ↔  ( ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  ∈  ( ℤ≥ ‘ 3 )  ∧  ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) ) ) ) )  | 
						
						
							| 80 | 
							
								58 78 79
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  ∈  ( 3 ... ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) ) ) )  | 
						
						
							| 81 | 
							
								4
							 | 
							oveq2i | 
							⊢ ( 3 ... 𝐾 )  =  ( 3 ... ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) ) )  | 
						
						
							| 82 | 
							
								80 5 81
							 | 
							3eltr4g | 
							⊢ ( 𝜑  →  𝑀  ∈  ( 3 ... 𝐾 ) )  |