| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bpos.1 | 
							⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 5 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bpos.2 | 
							⊢ ( 𝜑  →  ¬  ∃ 𝑝  ∈  ℙ ( 𝑁  <  𝑝  ∧  𝑝  ≤  ( 2  ·  𝑁 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bpos.3 | 
							⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ ( 𝑛  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ) ,  1 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							bpos.4 | 
							⊢ 𝐾  =  ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bpos.5 | 
							⊢ 𝑀  =  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							4nn | 
							⊢ 4  ∈  ℕ  | 
						
						
							| 7 | 
							
								
							 | 
							5nn | 
							⊢ 5  ∈  ℕ  | 
						
						
							| 8 | 
							
								
							 | 
							eluznn | 
							⊢ ( ( 5  ∈  ℕ  ∧  𝑁  ∈  ( ℤ≥ ‘ 5 ) )  →  𝑁  ∈  ℕ )  | 
						
						
							| 9 | 
							
								7 1 8
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ )  | 
						
						
							| 10 | 
							
								9
							 | 
							nnnn0d | 
							⊢ ( 𝜑  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 11 | 
							
								
							 | 
							nnexpcl | 
							⊢ ( ( 4  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 4 ↑ 𝑁 )  ∈  ℕ )  | 
						
						
							| 12 | 
							
								6 10 11
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 4 ↑ 𝑁 )  ∈  ℕ )  | 
						
						
							| 13 | 
							
								12
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( 4 ↑ 𝑁 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								13 9
							 | 
							nndivred | 
							⊢ ( 𝜑  →  ( ( 4 ↑ 𝑁 )  /  𝑁 )  ∈  ℝ )  | 
						
						
							| 15 | 
							
								
							 | 
							fzctr | 
							⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 ... ( 2  ·  𝑁 ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑁  ∈  ( 0 ... ( 2  ·  𝑁 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							bccl2 | 
							⊢ ( 𝑁  ∈  ( 0 ... ( 2  ·  𝑁 ) )  →  ( ( 2  ·  𝑁 ) C 𝑁 )  ∈  ℕ )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 ) C 𝑁 )  ∈  ℕ )  | 
						
						
							| 19 | 
							
								18
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 ) C 𝑁 )  ∈  ℝ )  | 
						
						
							| 20 | 
							
								
							 | 
							2nn | 
							⊢ 2  ∈  ℕ  | 
						
						
							| 21 | 
							
								
							 | 
							nnmulcl | 
							⊢ ( ( 2  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ·  𝑁 )  ∈  ℕ )  | 
						
						
							| 22 | 
							
								20 9 21
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℕ )  | 
						
						
							| 23 | 
							
								22
							 | 
							nnrpd | 
							⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℝ+ )  | 
						
						
							| 24 | 
							
								22
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 25 | 
							
								23
							 | 
							rpge0d | 
							⊢ ( 𝜑  →  0  ≤  ( 2  ·  𝑁 ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							resqrtcld | 
							⊢ ( 𝜑  →  ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ )  | 
						
						
							| 27 | 
							
								
							 | 
							3nn | 
							⊢ 3  ∈  ℕ  | 
						
						
							| 28 | 
							
								
							 | 
							nndivre | 
							⊢ ( ( ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  ∈  ℝ )  | 
						
						
							| 29 | 
							
								26 27 28
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  ∈  ℝ )  | 
						
						
							| 30 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 31 | 
							
								
							 | 
							readdcl | 
							⊢ ( ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 )  ∈  ℝ )  | 
						
						
							| 32 | 
							
								29 30 31
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 )  ∈  ℝ )  | 
						
						
							| 33 | 
							
								23 32
							 | 
							rpcxpcld | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ∈  ℝ+ )  | 
						
						
							| 34 | 
							
								33
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ∈  ℝ )  | 
						
						
							| 35 | 
							
								
							 | 
							2rp | 
							⊢ 2  ∈  ℝ+  | 
						
						
							| 36 | 
							
								
							 | 
							nnmulcl | 
							⊢ ( ( 4  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 4  ·  𝑁 )  ∈  ℕ )  | 
						
						
							| 37 | 
							
								6 9 36
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 4  ·  𝑁 )  ∈  ℕ )  | 
						
						
							| 38 | 
							
								37
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( 4  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 39 | 
							
								
							 | 
							nndivre | 
							⊢ ( ( ( 4  ·  𝑁 )  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( ( 4  ·  𝑁 )  /  3 )  ∈  ℝ )  | 
						
						
							| 40 | 
							
								38 27 39
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( 4  ·  𝑁 )  /  3 )  ∈  ℝ )  | 
						
						
							| 41 | 
							
								
							 | 
							5re | 
							⊢ 5  ∈  ℝ  | 
						
						
							| 42 | 
							
								
							 | 
							resubcl | 
							⊢ ( ( ( ( 4  ·  𝑁 )  /  3 )  ∈  ℝ  ∧  5  ∈  ℝ )  →  ( ( ( 4  ·  𝑁 )  /  3 )  −  5 )  ∈  ℝ )  | 
						
						
							| 43 | 
							
								40 41 42
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( ( 4  ·  𝑁 )  /  3 )  −  5 )  ∈  ℝ )  | 
						
						
							| 44 | 
							
								
							 | 
							rpcxpcl | 
							⊢ ( ( 2  ∈  ℝ+  ∧  ( ( ( 4  ·  𝑁 )  /  3 )  −  5 )  ∈  ℝ )  →  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) )  ∈  ℝ+ )  | 
						
						
							| 45 | 
							
								35 43 44
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) )  ∈  ℝ+ )  | 
						
						
							| 46 | 
							
								45
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) )  ∈  ℝ )  | 
						
						
							| 47 | 
							
								34 46
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) ) )  ∈  ℝ )  | 
						
						
							| 48 | 
							
								
							 | 
							df-5 | 
							⊢ 5  =  ( 4  +  1 )  | 
						
						
							| 49 | 
							
								
							 | 
							4z | 
							⊢ 4  ∈  ℤ  | 
						
						
							| 50 | 
							
								
							 | 
							uzid | 
							⊢ ( 4  ∈  ℤ  →  4  ∈  ( ℤ≥ ‘ 4 ) )  | 
						
						
							| 51 | 
							
								
							 | 
							peano2uz | 
							⊢ ( 4  ∈  ( ℤ≥ ‘ 4 )  →  ( 4  +  1 )  ∈  ( ℤ≥ ‘ 4 ) )  | 
						
						
							| 52 | 
							
								49 50 51
							 | 
							mp2b | 
							⊢ ( 4  +  1 )  ∈  ( ℤ≥ ‘ 4 )  | 
						
						
							| 53 | 
							
								48 52
							 | 
							eqeltri | 
							⊢ 5  ∈  ( ℤ≥ ‘ 4 )  | 
						
						
							| 54 | 
							
								
							 | 
							eqid | 
							⊢ ( ℤ≥ ‘ 4 )  =  ( ℤ≥ ‘ 4 )  | 
						
						
							| 55 | 
							
								54
							 | 
							uztrn2 | 
							⊢ ( ( 5  ∈  ( ℤ≥ ‘ 4 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 5 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 4 ) )  | 
						
						
							| 56 | 
							
								53 1 55
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 4 ) )  | 
						
						
							| 57 | 
							
								
							 | 
							bclbnd | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 4 )  →  ( ( 4 ↑ 𝑁 )  /  𝑁 )  <  ( ( 2  ·  𝑁 ) C 𝑁 ) )  | 
						
						
							| 58 | 
							
								56 57
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 4 ↑ 𝑁 )  /  𝑁 )  <  ( ( 2  ·  𝑁 ) C 𝑁 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							id | 
							⊢ ( 𝑛  ∈  ℙ  →  𝑛  ∈  ℙ )  | 
						
						
							| 60 | 
							
								
							 | 
							pccl | 
							⊢ ( ( 𝑛  ∈  ℙ  ∧  ( ( 2  ·  𝑁 ) C 𝑁 )  ∈  ℕ )  →  ( 𝑛  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ∈  ℕ0 )  | 
						
						
							| 61 | 
							
								59 18 60
							 | 
							syl2anr | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  ( 𝑛  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ∈  ℕ0 )  | 
						
						
							| 62 | 
							
								61
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℙ ( 𝑛  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ∈  ℕ0 )  | 
						
						
							| 63 | 
							
								3 62
							 | 
							pcmptcl | 
							⊢ ( 𝜑  →  ( 𝐹 : ℕ ⟶ ℕ  ∧  seq 1 (  ·  ,  𝐹 ) : ℕ ⟶ ℕ ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							simprd | 
							⊢ ( 𝜑  →  seq 1 (  ·  ,  𝐹 ) : ℕ ⟶ ℕ )  | 
						
						
							| 65 | 
							
								1 2 3 4 5
							 | 
							bposlem4 | 
							⊢ ( 𝜑  →  𝑀  ∈  ( 3 ... 𝐾 ) )  | 
						
						
							| 66 | 
							
								
							 | 
							elfzuz | 
							⊢ ( 𝑀  ∈  ( 3 ... 𝐾 )  →  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  | 
						
						
							| 68 | 
							
								
							 | 
							eluznn | 
							⊢ ( ( 3  ∈  ℕ  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑀  ∈  ℕ )  | 
						
						
							| 69 | 
							
								27 67 68
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝑀  ∈  ℕ )  | 
						
						
							| 70 | 
							
								64 69
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℕ )  | 
						
						
							| 71 | 
							
								70
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℝ )  | 
						
						
							| 72 | 
							
								
							 | 
							2z | 
							⊢ 2  ∈  ℤ  | 
						
						
							| 73 | 
							
								
							 | 
							nndivre | 
							⊢ ( ( ( 2  ·  𝑁 )  ∈  ℝ  ∧  3  ∈  ℕ )  →  ( ( 2  ·  𝑁 )  /  3 )  ∈  ℝ )  | 
						
						
							| 74 | 
							
								24 27 73
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 )  /  3 )  ∈  ℝ )  | 
						
						
							| 75 | 
							
								74
							 | 
							flcld | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) )  ∈  ℤ )  | 
						
						
							| 76 | 
							
								4 75
							 | 
							eqeltrid | 
							⊢ ( 𝜑  →  𝐾  ∈  ℤ )  | 
						
						
							| 77 | 
							
								
							 | 
							zmulcl | 
							⊢ ( ( 2  ∈  ℤ  ∧  𝐾  ∈  ℤ )  →  ( 2  ·  𝐾 )  ∈  ℤ )  | 
						
						
							| 78 | 
							
								72 76 77
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2  ·  𝐾 )  ∈  ℤ )  | 
						
						
							| 79 | 
							
								7
							 | 
							nnzi | 
							⊢ 5  ∈  ℤ  | 
						
						
							| 80 | 
							
								
							 | 
							zsubcl | 
							⊢ ( ( ( 2  ·  𝐾 )  ∈  ℤ  ∧  5  ∈  ℤ )  →  ( ( 2  ·  𝐾 )  −  5 )  ∈  ℤ )  | 
						
						
							| 81 | 
							
								78 79 80
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  5 )  ∈  ℤ )  | 
						
						
							| 82 | 
							
								81
							 | 
							zred | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  5 )  ∈  ℝ )  | 
						
						
							| 83 | 
							
								
							 | 
							rpcxpcl | 
							⊢ ( ( 2  ∈  ℝ+  ∧  ( ( 2  ·  𝐾 )  −  5 )  ∈  ℝ )  →  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ∈  ℝ+ )  | 
						
						
							| 84 | 
							
								35 82 83
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ∈  ℝ+ )  | 
						
						
							| 85 | 
							
								84
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ∈  ℝ )  | 
						
						
							| 86 | 
							
								71 85
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  ∈  ℝ )  | 
						
						
							| 87 | 
							
								1 2 3 4
							 | 
							bposlem3 | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  =  ( ( 2  ·  𝑁 ) C 𝑁 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							elfzuz3 | 
							⊢ ( 𝑀  ∈  ( 3 ... 𝐾 )  →  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 89 | 
							
								65 88
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 90 | 
							
								3 62 69 89
							 | 
							pcmptdvds | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∥  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 ) )  | 
						
						
							| 91 | 
							
								70
							 | 
							nnzd | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℤ )  | 
						
						
							| 92 | 
							
								70
							 | 
							nnne0d | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≠  0 )  | 
						
						
							| 93 | 
							
								
							 | 
							uztrn | 
							⊢ ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  𝐾  ∈  ( ℤ≥ ‘ 3 ) )  | 
						
						
							| 94 | 
							
								89 67 93
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝐾  ∈  ( ℤ≥ ‘ 3 ) )  | 
						
						
							| 95 | 
							
								
							 | 
							eluznn | 
							⊢ ( ( 3  ∈  ℕ  ∧  𝐾  ∈  ( ℤ≥ ‘ 3 ) )  →  𝐾  ∈  ℕ )  | 
						
						
							| 96 | 
							
								27 94 95
							 | 
							sylancr | 
							⊢ ( 𝜑  →  𝐾  ∈  ℕ )  | 
						
						
							| 97 | 
							
								64 96
							 | 
							ffvelcdmd | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  ∈  ℕ )  | 
						
						
							| 98 | 
							
								97
							 | 
							nnzd | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  ∈  ℤ )  | 
						
						
							| 99 | 
							
								
							 | 
							dvdsval2 | 
							⊢ ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℤ  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≠  0  ∧  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  ∈  ℤ )  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∥  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  ↔  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∈  ℤ ) )  | 
						
						
							| 100 | 
							
								91 92 98 99
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∥  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  ↔  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∈  ℤ ) )  | 
						
						
							| 101 | 
							
								90 100
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∈  ℤ )  | 
						
						
							| 102 | 
							
								101
							 | 
							zred | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∈  ℝ )  | 
						
						
							| 103 | 
							
								69
							 | 
							nnred | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 104 | 
							
								76
							 | 
							zred | 
							⊢ ( 𝜑  →  𝐾  ∈  ℝ )  | 
						
						
							| 105 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝐾 )  | 
						
						
							| 106 | 
							
								89 105
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑀  ≤  𝐾 )  | 
						
						
							| 107 | 
							
								
							 | 
							efchtdvds | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  𝐾  ∈  ℝ  ∧  𝑀  ≤  𝐾 )  →  ( exp ‘ ( θ ‘ 𝑀 ) )  ∥  ( exp ‘ ( θ ‘ 𝐾 ) ) )  | 
						
						
							| 108 | 
							
								103 104 106 107
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝑀 ) )  ∥  ( exp ‘ ( θ ‘ 𝐾 ) ) )  | 
						
						
							| 109 | 
							
								
							 | 
							efchtcl | 
							⊢ ( 𝑀  ∈  ℝ  →  ( exp ‘ ( θ ‘ 𝑀 ) )  ∈  ℕ )  | 
						
						
							| 110 | 
							
								103 109
							 | 
							syl | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝑀 ) )  ∈  ℕ )  | 
						
						
							| 111 | 
							
								110
							 | 
							nnzd | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝑀 ) )  ∈  ℤ )  | 
						
						
							| 112 | 
							
								110
							 | 
							nnne0d | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝑀 ) )  ≠  0 )  | 
						
						
							| 113 | 
							
								
							 | 
							efchtcl | 
							⊢ ( 𝐾  ∈  ℝ  →  ( exp ‘ ( θ ‘ 𝐾 ) )  ∈  ℕ )  | 
						
						
							| 114 | 
							
								104 113
							 | 
							syl | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝐾 ) )  ∈  ℕ )  | 
						
						
							| 115 | 
							
								114
							 | 
							nnzd | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝐾 ) )  ∈  ℤ )  | 
						
						
							| 116 | 
							
								
							 | 
							dvdsval2 | 
							⊢ ( ( ( exp ‘ ( θ ‘ 𝑀 ) )  ∈  ℤ  ∧  ( exp ‘ ( θ ‘ 𝑀 ) )  ≠  0  ∧  ( exp ‘ ( θ ‘ 𝐾 ) )  ∈  ℤ )  →  ( ( exp ‘ ( θ ‘ 𝑀 ) )  ∥  ( exp ‘ ( θ ‘ 𝐾 ) )  ↔  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℤ ) )  | 
						
						
							| 117 | 
							
								111 112 115 116
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝑀 ) )  ∥  ( exp ‘ ( θ ‘ 𝐾 ) )  ↔  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℤ ) )  | 
						
						
							| 118 | 
							
								108 117
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℤ )  | 
						
						
							| 119 | 
							
								118
							 | 
							zred | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℝ )  | 
						
						
							| 120 | 
							
								
							 | 
							prmz | 
							⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ )  | 
						
						
							| 121 | 
							
								
							 | 
							fllt | 
							⊢ ( ( ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ  ∧  𝑝  ∈  ℤ )  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  <  𝑝  ↔  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  <  𝑝 ) )  | 
						
						
							| 122 | 
							
								26 120 121
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  <  𝑝  ↔  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  <  𝑝 ) )  | 
						
						
							| 123 | 
							
								5
							 | 
							breq1i | 
							⊢ ( 𝑀  <  𝑝  ↔  ( ⌊ ‘ ( √ ‘ ( 2  ·  𝑁 ) ) )  <  𝑝 )  | 
						
						
							| 124 | 
							
								122 123
							 | 
							bitr4di | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  <  𝑝  ↔  𝑀  <  𝑝 ) )  | 
						
						
							| 125 | 
							
								120
							 | 
							zred | 
							⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℝ )  | 
						
						
							| 126 | 
							
								
							 | 
							ltnle | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑝  ∈  ℝ )  →  ( 𝑀  <  𝑝  ↔  ¬  𝑝  ≤  𝑀 ) )  | 
						
						
							| 127 | 
							
								103 125 126
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑀  <  𝑝  ↔  ¬  𝑝  ≤  𝑀 ) )  | 
						
						
							| 128 | 
							
								124 127
							 | 
							bitrd | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  <  𝑝  ↔  ¬  𝑝  ≤  𝑀 ) )  | 
						
						
							| 129 | 
							
								
							 | 
							bposlem1 | 
							⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑝  ∈  ℙ )  →  ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  ≤  ( 2  ·  𝑁 ) )  | 
						
						
							| 130 | 
							
								9 129
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  ≤  ( 2  ·  𝑁 ) )  | 
						
						
							| 131 | 
							
								125
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℝ )  | 
						
						
							| 132 | 
							
								
							 | 
							id | 
							⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℙ )  | 
						
						
							| 133 | 
							
								
							 | 
							pccl | 
							⊢ ( ( 𝑝  ∈  ℙ  ∧  ( ( 2  ·  𝑁 ) C 𝑁 )  ∈  ℕ )  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ∈  ℕ0 )  | 
						
						
							| 134 | 
							
								132 18 133
							 | 
							syl2anr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ∈  ℕ0 )  | 
						
						
							| 135 | 
							
								131 134
							 | 
							reexpcld | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  ∈  ℝ )  | 
						
						
							| 136 | 
							
								24
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 2  ·  𝑁 )  ∈  ℝ )  | 
						
						
							| 137 | 
							
								131
							 | 
							resqcld | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝 ↑ 2 )  ∈  ℝ )  | 
						
						
							| 138 | 
							
								
							 | 
							lelttr | 
							⊢ ( ( ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  ∈  ℝ  ∧  ( 2  ·  𝑁 )  ∈  ℝ  ∧  ( 𝑝 ↑ 2 )  ∈  ℝ )  →  ( ( ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  ≤  ( 2  ·  𝑁 )  ∧  ( 2  ·  𝑁 )  <  ( 𝑝 ↑ 2 ) )  →  ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  <  ( 𝑝 ↑ 2 ) ) )  | 
						
						
							| 139 | 
							
								135 136 137 138
							 | 
							syl3anc | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  ≤  ( 2  ·  𝑁 )  ∧  ( 2  ·  𝑁 )  <  ( 𝑝 ↑ 2 ) )  →  ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  <  ( 𝑝 ↑ 2 ) ) )  | 
						
						
							| 140 | 
							
								130 139
							 | 
							mpand | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 2  ·  𝑁 )  <  ( 𝑝 ↑ 2 )  →  ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  <  ( 𝑝 ↑ 2 ) ) )  | 
						
						
							| 141 | 
							
								
							 | 
							resqrtth | 
							⊢ ( ( ( 2  ·  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 2  ·  𝑁 ) )  →  ( ( √ ‘ ( 2  ·  𝑁 ) ) ↑ 2 )  =  ( 2  ·  𝑁 ) )  | 
						
						
							| 142 | 
							
								24 25 141
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝑁 ) ) ↑ 2 )  =  ( 2  ·  𝑁 ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							breq1d | 
							⊢ ( 𝜑  →  ( ( ( √ ‘ ( 2  ·  𝑁 ) ) ↑ 2 )  <  ( 𝑝 ↑ 2 )  ↔  ( 2  ·  𝑁 )  <  ( 𝑝 ↑ 2 ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( ( √ ‘ ( 2  ·  𝑁 ) ) ↑ 2 )  <  ( 𝑝 ↑ 2 )  ↔  ( 2  ·  𝑁 )  <  ( 𝑝 ↑ 2 ) ) )  | 
						
						
							| 145 | 
							
								134
							 | 
							nn0zd | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ∈  ℤ )  | 
						
						
							| 146 | 
							
								72
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  2  ∈  ℤ )  | 
						
						
							| 147 | 
							
								
							 | 
							prmgt1 | 
							⊢ ( 𝑝  ∈  ℙ  →  1  <  𝑝 )  | 
						
						
							| 148 | 
							
								147
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  1  <  𝑝 )  | 
						
						
							| 149 | 
							
								131 145 146 148
							 | 
							ltexp2d | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  <  2  ↔  ( 𝑝 ↑ ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  <  ( 𝑝 ↑ 2 ) ) )  | 
						
						
							| 150 | 
							
								140 144 149
							 | 
							3imtr4d | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( ( √ ‘ ( 2  ·  𝑁 ) ) ↑ 2 )  <  ( 𝑝 ↑ 2 )  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  <  2 ) )  | 
						
						
							| 151 | 
							
								
							 | 
							df-2 | 
							⊢ 2  =  ( 1  +  1 )  | 
						
						
							| 152 | 
							
								151
							 | 
							breq2i | 
							⊢ ( ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  <  2  ↔  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  <  ( 1  +  1 ) )  | 
						
						
							| 153 | 
							
								150 152
							 | 
							imbitrdi | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( ( √ ‘ ( 2  ·  𝑁 ) ) ↑ 2 )  <  ( 𝑝 ↑ 2 )  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  <  ( 1  +  1 ) ) )  | 
						
						
							| 154 | 
							
								26
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( √ ‘ ( 2  ·  𝑁 ) )  ∈  ℝ )  | 
						
						
							| 155 | 
							
								24 25
							 | 
							sqrtge0d | 
							⊢ ( 𝜑  →  0  ≤  ( √ ‘ ( 2  ·  𝑁 ) ) )  | 
						
						
							| 156 | 
							
								155
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  0  ≤  ( √ ‘ ( 2  ·  𝑁 ) ) )  | 
						
						
							| 157 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ )  | 
						
						
							| 158 | 
							
								157
							 | 
							nnrpd | 
							⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℝ+ )  | 
						
						
							| 159 | 
							
								158
							 | 
							rpge0d | 
							⊢ ( 𝑝  ∈  ℙ  →  0  ≤  𝑝 )  | 
						
						
							| 160 | 
							
								159
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  0  ≤  𝑝 )  | 
						
						
							| 161 | 
							
								154 131 156 160
							 | 
							lt2sqd | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  <  𝑝  ↔  ( ( √ ‘ ( 2  ·  𝑁 ) ) ↑ 2 )  <  ( 𝑝 ↑ 2 ) ) )  | 
						
						
							| 162 | 
							
								
							 | 
							1z | 
							⊢ 1  ∈  ℤ  | 
						
						
							| 163 | 
							
								
							 | 
							zleltp1 | 
							⊢ ( ( ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ≤  1  ↔  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  <  ( 1  +  1 ) ) )  | 
						
						
							| 164 | 
							
								145 162 163
							 | 
							sylancl | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ≤  1  ↔  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  <  ( 1  +  1 ) ) )  | 
						
						
							| 165 | 
							
								153 161 164
							 | 
							3imtr4d | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( √ ‘ ( 2  ·  𝑁 ) )  <  𝑝  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ≤  1 ) )  | 
						
						
							| 166 | 
							
								128 165
							 | 
							sylbird | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ¬  𝑝  ≤  𝑀  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ≤  1 ) )  | 
						
						
							| 167 | 
							
								166
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ¬  𝑝  ≤  𝑀 )  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ≤  1 )  | 
						
						
							| 168 | 
							
								167
							 | 
							adantrl | 
							⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) )  →  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ≤  1 )  | 
						
						
							| 169 | 
							
								
							 | 
							iftrue | 
							⊢ ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 )  =  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 )  =  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  | 
						
						
							| 171 | 
							
								
							 | 
							iftrue | 
							⊢ ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 )  =  1 )  | 
						
						
							| 172 | 
							
								171
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 )  =  1 )  | 
						
						
							| 173 | 
							
								168 170 172
							 | 
							3brtr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 )  ≤  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 ) )  | 
						
						
							| 174 | 
							
								
							 | 
							0le0 | 
							⊢ 0  ≤  0  | 
						
						
							| 175 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 )  =  0 )  | 
						
						
							| 176 | 
							
								
							 | 
							iffalse | 
							⊢ ( ¬  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 )  =  0 )  | 
						
						
							| 177 | 
							
								175 176
							 | 
							breq12d | 
							⊢ ( ¬  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 )  →  ( if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 )  ≤  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 )  ↔  0  ≤  0 ) )  | 
						
						
							| 178 | 
							
								174 177
							 | 
							mpbiri | 
							⊢ ( ¬  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 )  ≤  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 ) )  | 
						
						
							| 179 | 
							
								178
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ℙ )  ∧  ¬  ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 )  ≤  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 ) )  | 
						
						
							| 180 | 
							
								173 179
							 | 
							pm2.61dan | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 )  ≤  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 ) )  | 
						
						
							| 181 | 
							
								62
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ∀ 𝑛  ∈  ℙ ( 𝑛  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  ∈  ℕ0 )  | 
						
						
							| 182 | 
							
								69
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑀  ∈  ℕ )  | 
						
						
							| 183 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝑝  ∈  ℙ )  | 
						
						
							| 184 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  𝑝  →  ( 𝑛  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) )  =  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) )  | 
						
						
							| 185 | 
							
								89
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  𝐾  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 186 | 
							
								3 181 182 183 184 185
							 | 
							pcmpt2 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) ) )  =  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  ( 𝑝  pCnt  ( ( 2  ·  𝑁 ) C 𝑁 ) ) ,  0 ) )  | 
						
						
							| 187 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) )  | 
						
						
							| 188 | 
							
								187
							 | 
							prmorcht | 
							⊢ ( 𝐾  ∈  ℕ  →  ( exp ‘ ( θ ‘ 𝐾 ) )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝐾 ) )  | 
						
						
							| 189 | 
							
								96 188
							 | 
							syl | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝐾 ) )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝐾 ) )  | 
						
						
							| 190 | 
							
								187
							 | 
							prmorcht | 
							⊢ ( 𝑀  ∈  ℕ  →  ( exp ‘ ( θ ‘ 𝑀 ) )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝑀 ) )  | 
						
						
							| 191 | 
							
								69 190
							 | 
							syl | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝑀 ) )  =  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝑀 ) )  | 
						
						
							| 192 | 
							
								189 191
							 | 
							oveq12d | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  =  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝑀 ) ) )  | 
						
						
							| 193 | 
							
								192
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  =  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝑀 ) ) )  | 
						
						
							| 194 | 
							
								193
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) )  =  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝑀 ) ) ) )  | 
						
						
							| 195 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ )  | 
						
						
							| 196 | 
							
								195
							 | 
							exp1d | 
							⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ 1 )  =  𝑛 )  | 
						
						
							| 197 | 
							
								196
							 | 
							ifeq1d | 
							⊢ ( 𝑛  ∈  ℕ  →  if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ 1 ) ,  1 )  =  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) )  | 
						
						
							| 198 | 
							
								197
							 | 
							mpteq2ia | 
							⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ 1 ) ,  1 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) )  | 
						
						
							| 199 | 
							
								198
							 | 
							eqcomi | 
							⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( 𝑛 ↑ 1 ) ,  1 ) )  | 
						
						
							| 200 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 201 | 
							
								200
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝑛  ∈  ℙ )  →  1  ∈  ℕ0 )  | 
						
						
							| 202 | 
							
								201
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑛  ∈  ℙ 1  ∈  ℕ0 )  | 
						
						
							| 203 | 
							
								202
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ∀ 𝑛  ∈  ℙ 1  ∈  ℕ0 )  | 
						
						
							| 204 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝑛  =  𝑝  →  1  =  1 )  | 
						
						
							| 205 | 
							
								199 203 182 183 204 185
							 | 
							pcmpt2 | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  𝑛 ,  1 ) ) ) ‘ 𝑀 ) ) )  =  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 ) )  | 
						
						
							| 206 | 
							
								194 205
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) )  =  if ( ( 𝑝  ≤  𝐾  ∧  ¬  𝑝  ≤  𝑀 ) ,  1 ,  0 ) )  | 
						
						
							| 207 | 
							
								180 186 206
							 | 
							3brtr4d | 
							⊢ ( ( 𝜑  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) ) )  ≤  ( 𝑝  pCnt  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) )  | 
						
						
							| 208 | 
							
								207
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) ) )  ≤  ( 𝑝  pCnt  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) )  | 
						
						
							| 209 | 
							
								
							 | 
							pc2dvds | 
							⊢ ( ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∈  ℤ  ∧  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℤ )  →  ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∥  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) ) )  ≤  ( 𝑝  pCnt  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) )  | 
						
						
							| 210 | 
							
								101 118 209
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∥  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) ) )  ≤  ( 𝑝  pCnt  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) ) )  | 
						
						
							| 211 | 
							
								208 210
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∥  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) )  | 
						
						
							| 212 | 
							
								114
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝐾 ) )  ∈  ℝ )  | 
						
						
							| 213 | 
							
								110
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝑀 ) )  ∈  ℝ )  | 
						
						
							| 214 | 
							
								114
							 | 
							nngt0d | 
							⊢ ( 𝜑  →  0  <  ( exp ‘ ( θ ‘ 𝐾 ) ) )  | 
						
						
							| 215 | 
							
								110
							 | 
							nngt0d | 
							⊢ ( 𝜑  →  0  <  ( exp ‘ ( θ ‘ 𝑀 ) ) )  | 
						
						
							| 216 | 
							
								212 213 214 215
							 | 
							divgt0d | 
							⊢ ( 𝜑  →  0  <  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) )  | 
						
						
							| 217 | 
							
								
							 | 
							elnnz | 
							⊢ ( ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℕ  ↔  ( ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℤ  ∧  0  <  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) )  | 
						
						
							| 218 | 
							
								118 216 217
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℕ )  | 
						
						
							| 219 | 
							
								
							 | 
							dvdsle | 
							⊢ ( ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∈  ℤ  ∧  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∈  ℕ )  →  ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∥  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ≤  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) )  | 
						
						
							| 220 | 
							
								101 218 219
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ∥  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ≤  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) ) )  | 
						
						
							| 221 | 
							
								211 220
							 | 
							mpd | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  ≤  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) ) )  | 
						
						
							| 222 | 
							
								
							 | 
							nndivre | 
							⊢ ( ( ( exp ‘ ( θ ‘ 𝐾 ) )  ∈  ℝ  ∧  4  ∈  ℕ )  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  4 )  ∈  ℝ )  | 
						
						
							| 223 | 
							
								212 6 222
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  4 )  ∈  ℝ )  | 
						
						
							| 224 | 
							
								
							 | 
							4re | 
							⊢ 4  ∈  ℝ  | 
						
						
							| 225 | 
							
								224
							 | 
							a1i | 
							⊢ ( 𝜑  →  4  ∈  ℝ )  | 
						
						
							| 226 | 
							
								
							 | 
							6re | 
							⊢ 6  ∈  ℝ  | 
						
						
							| 227 | 
							
								226
							 | 
							a1i | 
							⊢ ( 𝜑  →  6  ∈  ℝ )  | 
						
						
							| 228 | 
							
								
							 | 
							4lt6 | 
							⊢ 4  <  6  | 
						
						
							| 229 | 
							
								228
							 | 
							a1i | 
							⊢ ( 𝜑  →  4  <  6 )  | 
						
						
							| 230 | 
							
								
							 | 
							cht3 | 
							⊢ ( θ ‘ 3 )  =  ( log ‘ 6 )  | 
						
						
							| 231 | 
							
								230
							 | 
							fveq2i | 
							⊢ ( exp ‘ ( θ ‘ 3 ) )  =  ( exp ‘ ( log ‘ 6 ) )  | 
						
						
							| 232 | 
							
								
							 | 
							6pos | 
							⊢ 0  <  6  | 
						
						
							| 233 | 
							
								226 232
							 | 
							elrpii | 
							⊢ 6  ∈  ℝ+  | 
						
						
							| 234 | 
							
								
							 | 
							reeflog | 
							⊢ ( 6  ∈  ℝ+  →  ( exp ‘ ( log ‘ 6 ) )  =  6 )  | 
						
						
							| 235 | 
							
								233 234
							 | 
							ax-mp | 
							⊢ ( exp ‘ ( log ‘ 6 ) )  =  6  | 
						
						
							| 236 | 
							
								231 235
							 | 
							eqtri | 
							⊢ ( exp ‘ ( θ ‘ 3 ) )  =  6  | 
						
						
							| 237 | 
							
								
							 | 
							3re | 
							⊢ 3  ∈  ℝ  | 
						
						
							| 238 | 
							
								237
							 | 
							a1i | 
							⊢ ( 𝜑  →  3  ∈  ℝ )  | 
						
						
							| 239 | 
							
								
							 | 
							eluzle | 
							⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑀 )  | 
						
						
							| 240 | 
							
								67 239
							 | 
							syl | 
							⊢ ( 𝜑  →  3  ≤  𝑀 )  | 
						
						
							| 241 | 
							
								
							 | 
							chtwordi | 
							⊢ ( ( 3  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  3  ≤  𝑀 )  →  ( θ ‘ 3 )  ≤  ( θ ‘ 𝑀 ) )  | 
						
						
							| 242 | 
							
								238 103 240 241
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( θ ‘ 3 )  ≤  ( θ ‘ 𝑀 ) )  | 
						
						
							| 243 | 
							
								
							 | 
							chtcl | 
							⊢ ( 3  ∈  ℝ  →  ( θ ‘ 3 )  ∈  ℝ )  | 
						
						
							| 244 | 
							
								237 243
							 | 
							ax-mp | 
							⊢ ( θ ‘ 3 )  ∈  ℝ  | 
						
						
							| 245 | 
							
								
							 | 
							chtcl | 
							⊢ ( 𝑀  ∈  ℝ  →  ( θ ‘ 𝑀 )  ∈  ℝ )  | 
						
						
							| 246 | 
							
								103 245
							 | 
							syl | 
							⊢ ( 𝜑  →  ( θ ‘ 𝑀 )  ∈  ℝ )  | 
						
						
							| 247 | 
							
								
							 | 
							efle | 
							⊢ ( ( ( θ ‘ 3 )  ∈  ℝ  ∧  ( θ ‘ 𝑀 )  ∈  ℝ )  →  ( ( θ ‘ 3 )  ≤  ( θ ‘ 𝑀 )  ↔  ( exp ‘ ( θ ‘ 3 ) )  ≤  ( exp ‘ ( θ ‘ 𝑀 ) ) ) )  | 
						
						
							| 248 | 
							
								244 246 247
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( θ ‘ 3 )  ≤  ( θ ‘ 𝑀 )  ↔  ( exp ‘ ( θ ‘ 3 ) )  ≤  ( exp ‘ ( θ ‘ 𝑀 ) ) ) )  | 
						
						
							| 249 | 
							
								242 248
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 3 ) )  ≤  ( exp ‘ ( θ ‘ 𝑀 ) ) )  | 
						
						
							| 250 | 
							
								236 249
							 | 
							eqbrtrrid | 
							⊢ ( 𝜑  →  6  ≤  ( exp ‘ ( θ ‘ 𝑀 ) ) )  | 
						
						
							| 251 | 
							
								225 227 213 229 250
							 | 
							ltletrd | 
							⊢ ( 𝜑  →  4  <  ( exp ‘ ( θ ‘ 𝑀 ) ) )  | 
						
						
							| 252 | 
							
								
							 | 
							4pos | 
							⊢ 0  <  4  | 
						
						
							| 253 | 
							
								252
							 | 
							a1i | 
							⊢ ( 𝜑  →  0  <  4 )  | 
						
						
							| 254 | 
							
								
							 | 
							ltdiv2 | 
							⊢ ( ( ( 4  ∈  ℝ  ∧  0  <  4 )  ∧  ( ( exp ‘ ( θ ‘ 𝑀 ) )  ∈  ℝ  ∧  0  <  ( exp ‘ ( θ ‘ 𝑀 ) ) )  ∧  ( ( exp ‘ ( θ ‘ 𝐾 ) )  ∈  ℝ  ∧  0  <  ( exp ‘ ( θ ‘ 𝐾 ) ) ) )  →  ( 4  <  ( exp ‘ ( θ ‘ 𝑀 ) )  ↔  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  <  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  4 ) ) )  | 
						
						
							| 255 | 
							
								225 253 213 215 212 214 254
							 | 
							syl222anc | 
							⊢ ( 𝜑  →  ( 4  <  ( exp ‘ ( θ ‘ 𝑀 ) )  ↔  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  <  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  4 ) ) )  | 
						
						
							| 256 | 
							
								251 255
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  <  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  4 ) )  | 
						
						
							| 257 | 
							
								30
							 | 
							a1i | 
							⊢ ( 𝜑  →  2  ∈  ℝ )  | 
						
						
							| 258 | 
							
								
							 | 
							2lt3 | 
							⊢ 2  <  3  | 
						
						
							| 259 | 
							
								258
							 | 
							a1i | 
							⊢ ( 𝜑  →  2  <  3 )  | 
						
						
							| 260 | 
							
								238 103 104 240 106
							 | 
							letrd | 
							⊢ ( 𝜑  →  3  ≤  𝐾 )  | 
						
						
							| 261 | 
							
								257 238 104 259 260
							 | 
							ltletrd | 
							⊢ ( 𝜑  →  2  <  𝐾 )  | 
						
						
							| 262 | 
							
								
							 | 
							chtub | 
							⊢ ( ( 𝐾  ∈  ℝ  ∧  2  <  𝐾 )  →  ( θ ‘ 𝐾 )  <  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) )  | 
						
						
							| 263 | 
							
								104 261 262
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( θ ‘ 𝐾 )  <  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) )  | 
						
						
							| 264 | 
							
								
							 | 
							chtcl | 
							⊢ ( 𝐾  ∈  ℝ  →  ( θ ‘ 𝐾 )  ∈  ℝ )  | 
						
						
							| 265 | 
							
								104 264
							 | 
							syl | 
							⊢ ( 𝜑  →  ( θ ‘ 𝐾 )  ∈  ℝ )  | 
						
						
							| 266 | 
							
								
							 | 
							relogcl | 
							⊢ ( 2  ∈  ℝ+  →  ( log ‘ 2 )  ∈  ℝ )  | 
						
						
							| 267 | 
							
								35 266
							 | 
							ax-mp | 
							⊢ ( log ‘ 2 )  ∈  ℝ  | 
						
						
							| 268 | 
							
								
							 | 
							3z | 
							⊢ 3  ∈  ℤ  | 
						
						
							| 269 | 
							
								
							 | 
							zsubcl | 
							⊢ ( ( ( 2  ·  𝐾 )  ∈  ℤ  ∧  3  ∈  ℤ )  →  ( ( 2  ·  𝐾 )  −  3 )  ∈  ℤ )  | 
						
						
							| 270 | 
							
								78 268 269
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  3 )  ∈  ℤ )  | 
						
						
							| 271 | 
							
								270
							 | 
							zred | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  3 )  ∈  ℝ )  | 
						
						
							| 272 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( ( log ‘ 2 )  ∈  ℝ  ∧  ( ( 2  ·  𝐾 )  −  3 )  ∈  ℝ )  →  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) )  ∈  ℝ )  | 
						
						
							| 273 | 
							
								267 271 272
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) )  ∈  ℝ )  | 
						
						
							| 274 | 
							
								
							 | 
							eflt | 
							⊢ ( ( ( θ ‘ 𝐾 )  ∈  ℝ  ∧  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) )  ∈  ℝ )  →  ( ( θ ‘ 𝐾 )  <  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) )  ↔  ( exp ‘ ( θ ‘ 𝐾 ) )  <  ( exp ‘ ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) ) ) )  | 
						
						
							| 275 | 
							
								265 273 274
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( θ ‘ 𝐾 )  <  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) )  ↔  ( exp ‘ ( θ ‘ 𝐾 ) )  <  ( exp ‘ ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) ) ) )  | 
						
						
							| 276 | 
							
								263 275
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝐾 ) )  <  ( exp ‘ ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) ) )  | 
						
						
							| 277 | 
							
								
							 | 
							reexplog | 
							⊢ ( ( 2  ∈  ℝ+  ∧  ( ( 2  ·  𝐾 )  −  3 )  ∈  ℤ )  →  ( 2 ↑ ( ( 2  ·  𝐾 )  −  3 ) )  =  ( exp ‘ ( ( ( 2  ·  𝐾 )  −  3 )  ·  ( log ‘ 2 ) ) ) )  | 
						
						
							| 278 | 
							
								35 270 277
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2 ↑ ( ( 2  ·  𝐾 )  −  3 ) )  =  ( exp ‘ ( ( ( 2  ·  𝐾 )  −  3 )  ·  ( log ‘ 2 ) ) ) )  | 
						
						
							| 279 | 
							
								270
							 | 
							zcnd | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  3 )  ∈  ℂ )  | 
						
						
							| 280 | 
							
								267
							 | 
							recni | 
							⊢ ( log ‘ 2 )  ∈  ℂ  | 
						
						
							| 281 | 
							
								
							 | 
							mulcom | 
							⊢ ( ( ( ( 2  ·  𝐾 )  −  3 )  ∈  ℂ  ∧  ( log ‘ 2 )  ∈  ℂ )  →  ( ( ( 2  ·  𝐾 )  −  3 )  ·  ( log ‘ 2 ) )  =  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) )  | 
						
						
							| 282 | 
							
								279 280 281
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( ( ( 2  ·  𝐾 )  −  3 )  ·  ( log ‘ 2 ) )  =  ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) )  | 
						
						
							| 283 | 
							
								282
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( exp ‘ ( ( ( 2  ·  𝐾 )  −  3 )  ·  ( log ‘ 2 ) ) )  =  ( exp ‘ ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) ) )  | 
						
						
							| 284 | 
							
								278 283
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( 2 ↑ ( ( 2  ·  𝐾 )  −  3 ) )  =  ( exp ‘ ( ( log ‘ 2 )  ·  ( ( 2  ·  𝐾 )  −  3 ) ) ) )  | 
						
						
							| 285 | 
							
								276 284
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝐾 ) )  <  ( 2 ↑ ( ( 2  ·  𝐾 )  −  3 ) ) )  | 
						
						
							| 286 | 
							
								
							 | 
							3p2e5 | 
							⊢ ( 3  +  2 )  =  5  | 
						
						
							| 287 | 
							
								286
							 | 
							oveq1i | 
							⊢ ( ( 3  +  2 )  −  2 )  =  ( 5  −  2 )  | 
						
						
							| 288 | 
							
								
							 | 
							3cn | 
							⊢ 3  ∈  ℂ  | 
						
						
							| 289 | 
							
								
							 | 
							2cn | 
							⊢ 2  ∈  ℂ  | 
						
						
							| 290 | 
							
								288 289
							 | 
							pncan3oi | 
							⊢ ( ( 3  +  2 )  −  2 )  =  3  | 
						
						
							| 291 | 
							
								287 290
							 | 
							eqtr3i | 
							⊢ ( 5  −  2 )  =  3  | 
						
						
							| 292 | 
							
								291
							 | 
							oveq2i | 
							⊢ ( ( 2  ·  𝐾 )  −  ( 5  −  2 ) )  =  ( ( 2  ·  𝐾 )  −  3 )  | 
						
						
							| 293 | 
							
								78
							 | 
							zcnd | 
							⊢ ( 𝜑  →  ( 2  ·  𝐾 )  ∈  ℂ )  | 
						
						
							| 294 | 
							
								
							 | 
							5cn | 
							⊢ 5  ∈  ℂ  | 
						
						
							| 295 | 
							
								
							 | 
							subsub | 
							⊢ ( ( ( 2  ·  𝐾 )  ∈  ℂ  ∧  5  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( 2  ·  𝐾 )  −  ( 5  −  2 ) )  =  ( ( ( 2  ·  𝐾 )  −  5 )  +  2 ) )  | 
						
						
							| 296 | 
							
								294 289 295
							 | 
							mp3an23 | 
							⊢ ( ( 2  ·  𝐾 )  ∈  ℂ  →  ( ( 2  ·  𝐾 )  −  ( 5  −  2 ) )  =  ( ( ( 2  ·  𝐾 )  −  5 )  +  2 ) )  | 
						
						
							| 297 | 
							
								293 296
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  ( 5  −  2 ) )  =  ( ( ( 2  ·  𝐾 )  −  5 )  +  2 ) )  | 
						
						
							| 298 | 
							
								292 297
							 | 
							eqtr3id | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  3 )  =  ( ( ( 2  ·  𝐾 )  −  5 )  +  2 ) )  | 
						
						
							| 299 | 
							
								298
							 | 
							oveq2d | 
							⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  3 ) )  =  ( 2 ↑𝑐 ( ( ( 2  ·  𝐾 )  −  5 )  +  2 ) ) )  | 
						
						
							| 300 | 
							
								
							 | 
							2ne0 | 
							⊢ 2  ≠  0  | 
						
						
							| 301 | 
							
								
							 | 
							cxpexpz | 
							⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  ( ( 2  ·  𝐾 )  −  3 )  ∈  ℤ )  →  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  3 ) )  =  ( 2 ↑ ( ( 2  ·  𝐾 )  −  3 ) ) )  | 
						
						
							| 302 | 
							
								289 300 270 301
							 | 
							mp3an12i | 
							⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  3 ) )  =  ( 2 ↑ ( ( 2  ·  𝐾 )  −  3 ) ) )  | 
						
						
							| 303 | 
							
								81
							 | 
							zcnd | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  5 )  ∈  ℂ )  | 
						
						
							| 304 | 
							
								
							 | 
							2cnne0 | 
							⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 )  | 
						
						
							| 305 | 
							
								
							 | 
							cxpadd | 
							⊢ ( ( ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( ( 2  ·  𝐾 )  −  5 )  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( 2 ↑𝑐 ( ( ( 2  ·  𝐾 )  −  5 )  +  2 ) )  =  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  ( 2 ↑𝑐 2 ) ) )  | 
						
						
							| 306 | 
							
								304 289 305
							 | 
							mp3an13 | 
							⊢ ( ( ( 2  ·  𝐾 )  −  5 )  ∈  ℂ  →  ( 2 ↑𝑐 ( ( ( 2  ·  𝐾 )  −  5 )  +  2 ) )  =  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  ( 2 ↑𝑐 2 ) ) )  | 
						
						
							| 307 | 
							
								303 306
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( ( 2  ·  𝐾 )  −  5 )  +  2 ) )  =  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  ( 2 ↑𝑐 2 ) ) )  | 
						
						
							| 308 | 
							
								299 302 307
							 | 
							3eqtr3d | 
							⊢ ( 𝜑  →  ( 2 ↑ ( ( 2  ·  𝐾 )  −  3 ) )  =  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  ( 2 ↑𝑐 2 ) ) )  | 
						
						
							| 309 | 
							
								
							 | 
							2nn0 | 
							⊢ 2  ∈  ℕ0  | 
						
						
							| 310 | 
							
								
							 | 
							cxpexp | 
							⊢ ( ( 2  ∈  ℂ  ∧  2  ∈  ℕ0 )  →  ( 2 ↑𝑐 2 )  =  ( 2 ↑ 2 ) )  | 
						
						
							| 311 | 
							
								289 309 310
							 | 
							mp2an | 
							⊢ ( 2 ↑𝑐 2 )  =  ( 2 ↑ 2 )  | 
						
						
							| 312 | 
							
								
							 | 
							sq2 | 
							⊢ ( 2 ↑ 2 )  =  4  | 
						
						
							| 313 | 
							
								311 312
							 | 
							eqtri | 
							⊢ ( 2 ↑𝑐 2 )  =  4  | 
						
						
							| 314 | 
							
								313
							 | 
							oveq2i | 
							⊢ ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  ( 2 ↑𝑐 2 ) )  =  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  4 )  | 
						
						
							| 315 | 
							
								308 314
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  ( 2 ↑ ( ( 2  ·  𝐾 )  −  3 ) )  =  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  4 ) )  | 
						
						
							| 316 | 
							
								285 315
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  ( exp ‘ ( θ ‘ 𝐾 ) )  <  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  4 ) )  | 
						
						
							| 317 | 
							
								224 252
							 | 
							pm3.2i | 
							⊢ ( 4  ∈  ℝ  ∧  0  <  4 )  | 
						
						
							| 318 | 
							
								317
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 4  ∈  ℝ  ∧  0  <  4 ) )  | 
						
						
							| 319 | 
							
								
							 | 
							ltdivmul2 | 
							⊢ ( ( ( exp ‘ ( θ ‘ 𝐾 ) )  ∈  ℝ  ∧  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ∈  ℝ  ∧  ( 4  ∈  ℝ  ∧  0  <  4 ) )  →  ( ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  4 )  <  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ↔  ( exp ‘ ( θ ‘ 𝐾 ) )  <  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  4 ) ) )  | 
						
						
							| 320 | 
							
								212 85 318 319
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  4 )  <  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ↔  ( exp ‘ ( θ ‘ 𝐾 ) )  <  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ·  4 ) ) )  | 
						
						
							| 321 | 
							
								316 320
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  4 )  <  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  | 
						
						
							| 322 | 
							
								119 223 85 256 321
							 | 
							lttrd | 
							⊢ ( 𝜑  →  ( ( exp ‘ ( θ ‘ 𝐾 ) )  /  ( exp ‘ ( θ ‘ 𝑀 ) ) )  <  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  | 
						
						
							| 323 | 
							
								102 119 85 221 322
							 | 
							lelttrd | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  <  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  | 
						
						
							| 324 | 
							
								97
							 | 
							nnred | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  ∈  ℝ )  | 
						
						
							| 325 | 
							
								
							 | 
							nnre | 
							⊢ ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℕ  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℝ )  | 
						
						
							| 326 | 
							
								
							 | 
							nngt0 | 
							⊢ ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℕ  →  0  <  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  | 
						
						
							| 327 | 
							
								325 326
							 | 
							jca | 
							⊢ ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℕ  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℝ  ∧  0  <  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) ) )  | 
						
						
							| 328 | 
							
								70 327
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℝ  ∧  0  <  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) ) )  | 
						
						
							| 329 | 
							
								
							 | 
							ltdivmul | 
							⊢ ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  ∈  ℝ  ∧  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ∈  ℝ  ∧  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ∈  ℝ  ∧  0  <  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) ) )  →  ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  <  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ↔  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  <  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) ) ) )  | 
						
						
							| 330 | 
							
								324 85 328 329
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  /  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 ) )  <  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ↔  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  <  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) ) ) )  | 
						
						
							| 331 | 
							
								323 330
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝐾 )  <  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) ) )  | 
						
						
							| 332 | 
							
								87 331
							 | 
							eqbrtrrd | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 ) C 𝑁 )  <  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) ) )  | 
						
						
							| 333 | 
							
								34 85
							 | 
							remulcld | 
							⊢ ( 𝜑  →  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  ∈  ℝ )  | 
						
						
							| 334 | 
							
								1 2 3 4 5
							 | 
							bposlem5 | 
							⊢ ( 𝜑  →  ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≤  ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) ) )  | 
						
						
							| 335 | 
							
								71 34 84
							 | 
							lemul1d | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ≤  ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ↔  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  ≤  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) ) ) )  | 
						
						
							| 336 | 
							
								334 335
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  ≤  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) ) )  | 
						
						
							| 337 | 
							
								78
							 | 
							zred | 
							⊢ ( 𝜑  →  ( 2  ·  𝐾 )  ∈  ℝ )  | 
						
						
							| 338 | 
							
								41
							 | 
							a1i | 
							⊢ ( 𝜑  →  5  ∈  ℝ )  | 
						
						
							| 339 | 
							
								
							 | 
							flle | 
							⊢ ( ( ( 2  ·  𝑁 )  /  3 )  ∈  ℝ  →  ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) )  ≤  ( ( 2  ·  𝑁 )  /  3 ) )  | 
						
						
							| 340 | 
							
								74 339
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ⌊ ‘ ( ( 2  ·  𝑁 )  /  3 ) )  ≤  ( ( 2  ·  𝑁 )  /  3 ) )  | 
						
						
							| 341 | 
							
								4 340
							 | 
							eqbrtrid | 
							⊢ ( 𝜑  →  𝐾  ≤  ( ( 2  ·  𝑁 )  /  3 ) )  | 
						
						
							| 342 | 
							
								
							 | 
							2pos | 
							⊢ 0  <  2  | 
						
						
							| 343 | 
							
								30 342
							 | 
							pm3.2i | 
							⊢ ( 2  ∈  ℝ  ∧  0  <  2 )  | 
						
						
							| 344 | 
							
								343
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 2  ∈  ℝ  ∧  0  <  2 ) )  | 
						
						
							| 345 | 
							
								
							 | 
							lemul2 | 
							⊢ ( ( 𝐾  ∈  ℝ  ∧  ( ( 2  ·  𝑁 )  /  3 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝐾  ≤  ( ( 2  ·  𝑁 )  /  3 )  ↔  ( 2  ·  𝐾 )  ≤  ( 2  ·  ( ( 2  ·  𝑁 )  /  3 ) ) ) )  | 
						
						
							| 346 | 
							
								104 74 344 345
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐾  ≤  ( ( 2  ·  𝑁 )  /  3 )  ↔  ( 2  ·  𝐾 )  ≤  ( 2  ·  ( ( 2  ·  𝑁 )  /  3 ) ) ) )  | 
						
						
							| 347 | 
							
								341 346
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 2  ·  𝐾 )  ≤  ( 2  ·  ( ( 2  ·  𝑁 )  /  3 ) ) )  | 
						
						
							| 348 | 
							
								22
							 | 
							nncnd | 
							⊢ ( 𝜑  →  ( 2  ·  𝑁 )  ∈  ℂ )  | 
						
						
							| 349 | 
							
								
							 | 
							3ne0 | 
							⊢ 3  ≠  0  | 
						
						
							| 350 | 
							
								288 349
							 | 
							pm3.2i | 
							⊢ ( 3  ∈  ℂ  ∧  3  ≠  0 )  | 
						
						
							| 351 | 
							
								
							 | 
							divass | 
							⊢ ( ( 2  ∈  ℂ  ∧  ( 2  ·  𝑁 )  ∈  ℂ  ∧  ( 3  ∈  ℂ  ∧  3  ≠  0 ) )  →  ( ( 2  ·  ( 2  ·  𝑁 ) )  /  3 )  =  ( 2  ·  ( ( 2  ·  𝑁 )  /  3 ) ) )  | 
						
						
							| 352 | 
							
								289 350 351
							 | 
							mp3an13 | 
							⊢ ( ( 2  ·  𝑁 )  ∈  ℂ  →  ( ( 2  ·  ( 2  ·  𝑁 ) )  /  3 )  =  ( 2  ·  ( ( 2  ·  𝑁 )  /  3 ) ) )  | 
						
						
							| 353 | 
							
								348 352
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 2  ·  ( 2  ·  𝑁 ) )  /  3 )  =  ( 2  ·  ( ( 2  ·  𝑁 )  /  3 ) ) )  | 
						
						
							| 354 | 
							
								9
							 | 
							nncnd | 
							⊢ ( 𝜑  →  𝑁  ∈  ℂ )  | 
						
						
							| 355 | 
							
								
							 | 
							mulass | 
							⊢ ( ( 2  ∈  ℂ  ∧  2  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( ( 2  ·  2 )  ·  𝑁 )  =  ( 2  ·  ( 2  ·  𝑁 ) ) )  | 
						
						
							| 356 | 
							
								289 289 354 355
							 | 
							mp3an12i | 
							⊢ ( 𝜑  →  ( ( 2  ·  2 )  ·  𝑁 )  =  ( 2  ·  ( 2  ·  𝑁 ) ) )  | 
						
						
							| 357 | 
							
								
							 | 
							2t2e4 | 
							⊢ ( 2  ·  2 )  =  4  | 
						
						
							| 358 | 
							
								357
							 | 
							oveq1i | 
							⊢ ( ( 2  ·  2 )  ·  𝑁 )  =  ( 4  ·  𝑁 )  | 
						
						
							| 359 | 
							
								356 358
							 | 
							eqtr3di | 
							⊢ ( 𝜑  →  ( 2  ·  ( 2  ·  𝑁 ) )  =  ( 4  ·  𝑁 ) )  | 
						
						
							| 360 | 
							
								359
							 | 
							oveq1d | 
							⊢ ( 𝜑  →  ( ( 2  ·  ( 2  ·  𝑁 ) )  /  3 )  =  ( ( 4  ·  𝑁 )  /  3 ) )  | 
						
						
							| 361 | 
							
								353 360
							 | 
							eqtr3d | 
							⊢ ( 𝜑  →  ( 2  ·  ( ( 2  ·  𝑁 )  /  3 ) )  =  ( ( 4  ·  𝑁 )  /  3 ) )  | 
						
						
							| 362 | 
							
								347 361
							 | 
							breqtrd | 
							⊢ ( 𝜑  →  ( 2  ·  𝐾 )  ≤  ( ( 4  ·  𝑁 )  /  3 ) )  | 
						
						
							| 363 | 
							
								337 40 338 362
							 | 
							lesub1dd | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐾 )  −  5 )  ≤  ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) )  | 
						
						
							| 364 | 
							
								
							 | 
							1lt2 | 
							⊢ 1  <  2  | 
						
						
							| 365 | 
							
								364
							 | 
							a1i | 
							⊢ ( 𝜑  →  1  <  2 )  | 
						
						
							| 366 | 
							
								257 365 82 43
							 | 
							cxpled | 
							⊢ ( 𝜑  →  ( ( ( 2  ·  𝐾 )  −  5 )  ≤  ( ( ( 4  ·  𝑁 )  /  3 )  −  5 )  ↔  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ≤  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) ) ) )  | 
						
						
							| 367 | 
							
								363 366
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ≤  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) ) )  | 
						
						
							| 368 | 
							
								85 46 33
							 | 
							lemul2d | 
							⊢ ( 𝜑  →  ( ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) )  ≤  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) )  ↔  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  ≤  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) ) ) ) )  | 
						
						
							| 369 | 
							
								367 368
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  ≤  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) ) ) )  | 
						
						
							| 370 | 
							
								86 333 47 336 369
							 | 
							letrd | 
							⊢ ( 𝜑  →  ( ( seq 1 (  ·  ,  𝐹 ) ‘ 𝑀 )  ·  ( 2 ↑𝑐 ( ( 2  ·  𝐾 )  −  5 ) ) )  ≤  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) ) ) )  | 
						
						
							| 371 | 
							
								19 86 47 332 370
							 | 
							ltletrd | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝑁 ) C 𝑁 )  <  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) ) ) )  | 
						
						
							| 372 | 
							
								14 19 47 58 371
							 | 
							lttrd | 
							⊢ ( 𝜑  →  ( ( 4 ↑ 𝑁 )  /  𝑁 )  <  ( ( ( 2  ·  𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2  ·  𝑁 ) )  /  3 )  +  2 ) )  ·  ( 2 ↑𝑐 ( ( ( 4  ·  𝑁 )  /  3 )  −  5 ) ) ) )  |