Step |
Hyp |
Ref |
Expression |
1 |
|
bposlem7.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) ) |
2 |
|
bposlem7.2 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) / 𝑥 ) ) |
3 |
|
bposlem7.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
4 |
|
bposlem7.4 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
5 |
|
bposlem7.5 |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ 𝐴 ) |
6 |
|
bposlem7.6 |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ 𝐵 ) |
7 |
4
|
nnrpd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
8 |
7
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐵 ) ∈ ℝ+ ) |
9 |
|
fveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( log ‘ 𝑥 ) = ( log ‘ ( √ ‘ 𝐵 ) ) ) |
10 |
|
id |
⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → 𝑥 = ( √ ‘ 𝐵 ) ) |
11 |
9 10
|
oveq12d |
⊢ ( 𝑥 = ( √ ‘ 𝐵 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) ) |
12 |
|
ovex |
⊢ ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) ∈ V |
13 |
11 2 12
|
fvmpt |
⊢ ( ( √ ‘ 𝐵 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) = ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) ) |
14 |
8 13
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) = ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) ) |
15 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
16 |
15
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℝ+ ) |
17 |
|
fveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( log ‘ 𝑥 ) = ( log ‘ ( √ ‘ 𝐴 ) ) ) |
18 |
|
id |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → 𝑥 = ( √ ‘ 𝐴 ) ) |
19 |
17 18
|
oveq12d |
⊢ ( 𝑥 = ( √ ‘ 𝐴 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) |
20 |
|
ovex |
⊢ ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ∈ V |
21 |
19 2 20
|
fvmpt |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) = ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) |
22 |
16 21
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) = ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) |
23 |
14 22
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) < ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ↔ ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) < ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) ) |
24 |
16
|
rpred |
⊢ ( 𝜑 → ( √ ‘ 𝐴 ) ∈ ℝ ) |
25 |
15
|
rprege0d |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
26 |
|
resqrtth |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
28 |
5 27
|
breqtrrd |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) |
29 |
16
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ 𝐴 ) ) |
30 |
|
ere |
⊢ e ∈ ℝ |
31 |
|
0re |
⊢ 0 ∈ ℝ |
32 |
|
epos |
⊢ 0 < e |
33 |
31 30 32
|
ltleii |
⊢ 0 ≤ e |
34 |
|
le2sq |
⊢ ( ( ( e ∈ ℝ ∧ 0 ≤ e ) ∧ ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) ) → ( e ≤ ( √ ‘ 𝐴 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
35 |
30 33 34
|
mpanl12 |
⊢ ( ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) → ( e ≤ ( √ ‘ 𝐴 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
36 |
24 29 35
|
syl2anc |
⊢ ( 𝜑 → ( e ≤ ( √ ‘ 𝐴 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐴 ) ↑ 2 ) ) ) |
37 |
28 36
|
mpbird |
⊢ ( 𝜑 → e ≤ ( √ ‘ 𝐴 ) ) |
38 |
8
|
rpred |
⊢ ( 𝜑 → ( √ ‘ 𝐵 ) ∈ ℝ ) |
39 |
7
|
rprege0d |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
40 |
|
resqrtth |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝐵 ) ↑ 2 ) = 𝐵 ) |
42 |
6 41
|
breqtrrd |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) |
43 |
8
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ 𝐵 ) ) |
44 |
|
le2sq |
⊢ ( ( ( e ∈ ℝ ∧ 0 ≤ e ) ∧ ( ( √ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐵 ) ) ) → ( e ≤ ( √ ‘ 𝐵 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
45 |
30 33 44
|
mpanl12 |
⊢ ( ( ( √ ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐵 ) ) → ( e ≤ ( √ ‘ 𝐵 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
46 |
38 43 45
|
syl2anc |
⊢ ( 𝜑 → ( e ≤ ( √ ‘ 𝐵 ) ↔ ( e ↑ 2 ) ≤ ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
47 |
42 46
|
mpbird |
⊢ ( 𝜑 → e ≤ ( √ ‘ 𝐵 ) ) |
48 |
|
logdivlt |
⊢ ( ( ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ e ≤ ( √ ‘ 𝐴 ) ) ∧ ( ( √ ‘ 𝐵 ) ∈ ℝ ∧ e ≤ ( √ ‘ 𝐵 ) ) ) → ( ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ↔ ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) < ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) ) |
49 |
24 37 38 47 48
|
syl22anc |
⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ↔ ( ( log ‘ ( √ ‘ 𝐵 ) ) / ( √ ‘ 𝐵 ) ) < ( ( log ‘ ( √ ‘ 𝐴 ) ) / ( √ ‘ 𝐴 ) ) ) ) |
50 |
24 38 29 43
|
lt2sqd |
⊢ ( 𝜑 → ( ( √ ‘ 𝐴 ) < ( √ ‘ 𝐵 ) ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( √ ‘ 𝐵 ) ↑ 2 ) ) ) |
51 |
23 49 50
|
3bitr2rd |
⊢ ( 𝜑 → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) < ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) |
52 |
27 41
|
breq12d |
⊢ ( 𝜑 → ( ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( ( √ ‘ 𝐵 ) ↑ 2 ) ↔ 𝐴 < 𝐵 ) ) |
53 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
54 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
55 |
53 54
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
56 |
2 55
|
fmpti |
⊢ 𝐺 : ℝ+ ⟶ ℝ |
57 |
56
|
ffvelrni |
⊢ ( ( √ ‘ 𝐵 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ∈ ℝ ) |
58 |
8 57
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ∈ ℝ ) |
59 |
56
|
ffvelrni |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
60 |
16 59
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
61 |
|
2rp |
⊢ 2 ∈ ℝ+ |
62 |
|
rpsqrtcl |
⊢ ( 2 ∈ ℝ+ → ( √ ‘ 2 ) ∈ ℝ+ ) |
63 |
61 62
|
mp1i |
⊢ ( 𝜑 → ( √ ‘ 2 ) ∈ ℝ+ ) |
64 |
58 60 63
|
ltmul2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) < ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ↔ ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
65 |
51 52 64
|
3bitr3d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
66 |
65
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
67 |
3
|
nnred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
68 |
4
|
nnred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
69 |
|
2re |
⊢ 2 ∈ ℝ |
70 |
|
2pos |
⊢ 0 < 2 |
71 |
69 70
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
72 |
71
|
a1i |
⊢ ( 𝜑 → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
73 |
|
ltdiv1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 2 ) < ( 𝐵 / 2 ) ) ) |
74 |
67 68 72 73
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 𝐴 / 2 ) < ( 𝐵 / 2 ) ) ) |
75 |
15
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐴 / 2 ) ∈ ℝ+ ) |
76 |
75
|
rpred |
⊢ ( 𝜑 → ( 𝐴 / 2 ) ∈ ℝ ) |
77 |
30 69
|
remulcli |
⊢ ( e · 2 ) ∈ ℝ |
78 |
77
|
a1i |
⊢ ( 𝜑 → ( e · 2 ) ∈ ℝ ) |
79 |
30
|
resqcli |
⊢ ( e ↑ 2 ) ∈ ℝ |
80 |
79
|
a1i |
⊢ ( 𝜑 → ( e ↑ 2 ) ∈ ℝ ) |
81 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
82 |
81
|
simpli |
⊢ 2 < e |
83 |
69 30 82
|
ltleii |
⊢ 2 ≤ e |
84 |
69 30 30
|
lemul2i |
⊢ ( 0 < e → ( 2 ≤ e ↔ ( e · 2 ) ≤ ( e · e ) ) ) |
85 |
32 84
|
ax-mp |
⊢ ( 2 ≤ e ↔ ( e · 2 ) ≤ ( e · e ) ) |
86 |
83 85
|
mpbi |
⊢ ( e · 2 ) ≤ ( e · e ) |
87 |
30
|
recni |
⊢ e ∈ ℂ |
88 |
87
|
sqvali |
⊢ ( e ↑ 2 ) = ( e · e ) |
89 |
86 88
|
breqtrri |
⊢ ( e · 2 ) ≤ ( e ↑ 2 ) |
90 |
89
|
a1i |
⊢ ( 𝜑 → ( e · 2 ) ≤ ( e ↑ 2 ) ) |
91 |
78 80 67 90 5
|
letrd |
⊢ ( 𝜑 → ( e · 2 ) ≤ 𝐴 ) |
92 |
|
lemuldiv |
⊢ ( ( e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( e · 2 ) ≤ 𝐴 ↔ e ≤ ( 𝐴 / 2 ) ) ) |
93 |
30 71 92
|
mp3an13 |
⊢ ( 𝐴 ∈ ℝ → ( ( e · 2 ) ≤ 𝐴 ↔ e ≤ ( 𝐴 / 2 ) ) ) |
94 |
67 93
|
syl |
⊢ ( 𝜑 → ( ( e · 2 ) ≤ 𝐴 ↔ e ≤ ( 𝐴 / 2 ) ) ) |
95 |
91 94
|
mpbid |
⊢ ( 𝜑 → e ≤ ( 𝐴 / 2 ) ) |
96 |
7
|
rphalfcld |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℝ+ ) |
97 |
96
|
rpred |
⊢ ( 𝜑 → ( 𝐵 / 2 ) ∈ ℝ ) |
98 |
78 80 68 90 6
|
letrd |
⊢ ( 𝜑 → ( e · 2 ) ≤ 𝐵 ) |
99 |
|
lemuldiv |
⊢ ( ( e ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( e · 2 ) ≤ 𝐵 ↔ e ≤ ( 𝐵 / 2 ) ) ) |
100 |
30 71 99
|
mp3an13 |
⊢ ( 𝐵 ∈ ℝ → ( ( e · 2 ) ≤ 𝐵 ↔ e ≤ ( 𝐵 / 2 ) ) ) |
101 |
68 100
|
syl |
⊢ ( 𝜑 → ( ( e · 2 ) ≤ 𝐵 ↔ e ≤ ( 𝐵 / 2 ) ) ) |
102 |
98 101
|
mpbid |
⊢ ( 𝜑 → e ≤ ( 𝐵 / 2 ) ) |
103 |
|
logdivlt |
⊢ ( ( ( ( 𝐴 / 2 ) ∈ ℝ ∧ e ≤ ( 𝐴 / 2 ) ) ∧ ( ( 𝐵 / 2 ) ∈ ℝ ∧ e ≤ ( 𝐵 / 2 ) ) ) → ( ( 𝐴 / 2 ) < ( 𝐵 / 2 ) ↔ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) < ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) ) |
104 |
76 95 97 102 103
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝐴 / 2 ) < ( 𝐵 / 2 ) ↔ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) < ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) ) |
105 |
74 104
|
bitrd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) < ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) ) |
106 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐵 / 2 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝐵 / 2 ) ) ) |
107 |
|
id |
⊢ ( 𝑥 = ( 𝐵 / 2 ) → 𝑥 = ( 𝐵 / 2 ) ) |
108 |
106 107
|
oveq12d |
⊢ ( 𝑥 = ( 𝐵 / 2 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) ) |
109 |
|
ovex |
⊢ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) ∈ V |
110 |
108 2 109
|
fvmpt |
⊢ ( ( 𝐵 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝐵 / 2 ) ) = ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) ) |
111 |
96 110
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐵 / 2 ) ) = ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) ) |
112 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐴 / 2 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝐴 / 2 ) ) ) |
113 |
|
id |
⊢ ( 𝑥 = ( 𝐴 / 2 ) → 𝑥 = ( 𝐴 / 2 ) ) |
114 |
112 113
|
oveq12d |
⊢ ( 𝑥 = ( 𝐴 / 2 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) |
115 |
|
ovex |
⊢ ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ∈ V |
116 |
114 2 115
|
fvmpt |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝐴 / 2 ) ) = ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) |
117 |
75 116
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐴 / 2 ) ) = ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) |
118 |
111 117
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( 𝐵 / 2 ) ) < ( 𝐺 ‘ ( 𝐴 / 2 ) ) ↔ ( ( log ‘ ( 𝐵 / 2 ) ) / ( 𝐵 / 2 ) ) < ( ( log ‘ ( 𝐴 / 2 ) ) / ( 𝐴 / 2 ) ) ) ) |
119 |
56
|
ffvelrni |
⊢ ( ( 𝐵 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝐵 / 2 ) ) ∈ ℝ ) |
120 |
96 119
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐵 / 2 ) ) ∈ ℝ ) |
121 |
56
|
ffvelrni |
⊢ ( ( 𝐴 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
122 |
75 121
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) |
123 |
|
9nn |
⊢ 9 ∈ ℕ |
124 |
|
4nn |
⊢ 4 ∈ ℕ |
125 |
|
nnrp |
⊢ ( 9 ∈ ℕ → 9 ∈ ℝ+ ) |
126 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
127 |
|
rpdivcl |
⊢ ( ( 9 ∈ ℝ+ ∧ 4 ∈ ℝ+ ) → ( 9 / 4 ) ∈ ℝ+ ) |
128 |
125 126 127
|
syl2an |
⊢ ( ( 9 ∈ ℕ ∧ 4 ∈ ℕ ) → ( 9 / 4 ) ∈ ℝ+ ) |
129 |
123 124 128
|
mp2an |
⊢ ( 9 / 4 ) ∈ ℝ+ |
130 |
129
|
a1i |
⊢ ( 𝜑 → ( 9 / 4 ) ∈ ℝ+ ) |
131 |
120 122 130
|
ltmul2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ ( 𝐵 / 2 ) ) < ( 𝐺 ‘ ( 𝐴 / 2 ) ) ↔ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) |
132 |
105 118 131
|
3bitr2d |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) |
133 |
132
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) |
134 |
66 133
|
jcad |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
135 |
|
sqrt2re |
⊢ ( √ ‘ 2 ) ∈ ℝ |
136 |
|
remulcl |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ ∧ ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ∈ ℝ ) → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) ∈ ℝ ) |
137 |
135 58 136
|
sylancr |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) ∈ ℝ ) |
138 |
|
9re |
⊢ 9 ∈ ℝ |
139 |
|
4re |
⊢ 4 ∈ ℝ |
140 |
|
4ne0 |
⊢ 4 ≠ 0 |
141 |
138 139 140
|
redivcli |
⊢ ( 9 / 4 ) ∈ ℝ |
142 |
|
remulcl |
⊢ ( ( ( 9 / 4 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝐵 / 2 ) ) ∈ ℝ ) → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ∈ ℝ ) |
143 |
141 120 142
|
sylancr |
⊢ ( 𝜑 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ∈ ℝ ) |
144 |
|
remulcl |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ ∧ ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∈ ℝ ) |
145 |
135 60 144
|
sylancr |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∈ ℝ ) |
146 |
|
remulcl |
⊢ ( ( ( 9 / 4 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝐴 / 2 ) ) ∈ ℝ ) → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
147 |
141 122 146
|
sylancr |
⊢ ( 𝜑 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) |
148 |
|
lt2add |
⊢ ( ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) ∈ ℝ ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ∈ ℝ ) ∧ ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∈ ℝ ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ∈ ℝ ) ) → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
149 |
137 143 145 147 148
|
syl22anc |
⊢ ( 𝜑 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) < ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ∧ ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) < ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
150 |
134 149
|
syld |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) ) |
151 |
|
ltmul2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐴 < 𝐵 ↔ ( 2 · 𝐴 ) < ( 2 · 𝐵 ) ) ) |
152 |
67 68 72 151
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( 2 · 𝐴 ) < ( 2 · 𝐵 ) ) ) |
153 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 2 · 𝐴 ) ∈ ℝ+ ) |
154 |
61 15 153
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐴 ) ∈ ℝ+ ) |
155 |
154
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ+ ) |
156 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 2 · 𝐵 ) ∈ ℝ+ ) |
157 |
61 7 156
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐵 ) ∈ ℝ+ ) |
158 |
157
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ+ ) |
159 |
|
rprege0 |
⊢ ( ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ+ → ( ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( 2 · 𝐴 ) ) ) ) |
160 |
|
rprege0 |
⊢ ( ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ+ → ( ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( 2 · 𝐵 ) ) ) ) |
161 |
|
lt2sq |
⊢ ( ( ( ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( 2 · 𝐴 ) ) ) ∧ ( ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( 2 · 𝐵 ) ) ) ) → ( ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ↔ ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) < ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) ) ) |
162 |
159 160 161
|
syl2an |
⊢ ( ( ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ+ ∧ ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ+ ) → ( ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ↔ ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) < ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) ) ) |
163 |
155 158 162
|
syl2anc |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ↔ ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) < ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) ) ) |
164 |
154
|
rprege0d |
⊢ ( 𝜑 → ( ( 2 · 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝐴 ) ) ) |
165 |
|
resqrtth |
⊢ ( ( ( 2 · 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝐴 ) ) → ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) = ( 2 · 𝐴 ) ) |
166 |
164 165
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) = ( 2 · 𝐴 ) ) |
167 |
157
|
rprege0d |
⊢ ( 𝜑 → ( ( 2 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝐵 ) ) ) |
168 |
|
resqrtth |
⊢ ( ( ( 2 · 𝐵 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝐵 ) ) → ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) = ( 2 · 𝐵 ) ) |
169 |
167 168
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) = ( 2 · 𝐵 ) ) |
170 |
166 169
|
breq12d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝐴 ) ) ↑ 2 ) < ( ( √ ‘ ( 2 · 𝐵 ) ) ↑ 2 ) ↔ ( 2 · 𝐴 ) < ( 2 · 𝐵 ) ) ) |
171 |
163 170
|
bitr2d |
⊢ ( 𝜑 → ( ( 2 · 𝐴 ) < ( 2 · 𝐵 ) ↔ ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ) ) |
172 |
|
1lt2 |
⊢ 1 < 2 |
173 |
|
rplogcl |
⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ( log ‘ 2 ) ∈ ℝ+ ) |
174 |
69 172 173
|
mp2an |
⊢ ( log ‘ 2 ) ∈ ℝ+ |
175 |
174
|
a1i |
⊢ ( 𝜑 → ( log ‘ 2 ) ∈ ℝ+ ) |
176 |
155 158 175
|
ltdiv2d |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝐴 ) ) < ( √ ‘ ( 2 · 𝐵 ) ) ↔ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
177 |
152 171 176
|
3bitrd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
178 |
177
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
179 |
150 178
|
jcad |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
180 |
137 143
|
readdcld |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) ∈ ℝ ) |
181 |
|
rpre |
⊢ ( ( log ‘ 2 ) ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
182 |
174 181
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
183 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( √ ‘ ( 2 · 𝐵 ) ) ∈ ℝ+ ) → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ∈ ℝ ) |
184 |
182 158 183
|
sylancr |
⊢ ( 𝜑 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ∈ ℝ ) |
185 |
145 147
|
readdcld |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∈ ℝ ) |
186 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( √ ‘ ( 2 · 𝐴 ) ) ∈ ℝ+ ) → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ∈ ℝ ) |
187 |
182 155 186
|
sylancr |
⊢ ( 𝜑 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ∈ ℝ ) |
188 |
|
lt2add |
⊢ ( ( ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) ∈ ℝ ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ∈ ℝ ) ∧ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∈ ℝ ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ∈ ℝ ) ) → ( ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) < ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
189 |
180 184 185 187 188
|
syl22anc |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) < ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ∧ ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) < ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) < ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
190 |
179 189
|
syld |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) < ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
191 |
|
2fveq3 |
⊢ ( 𝑛 = 𝐵 → ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) = ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) |
192 |
191
|
oveq2d |
⊢ ( 𝑛 = 𝐵 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) ) |
193 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝐵 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) |
194 |
193
|
oveq2d |
⊢ ( 𝑛 = 𝐵 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) = ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) |
195 |
192 194
|
oveq12d |
⊢ ( 𝑛 = 𝐵 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) ) |
196 |
|
oveq2 |
⊢ ( 𝑛 = 𝐵 → ( 2 · 𝑛 ) = ( 2 · 𝐵 ) ) |
197 |
196
|
fveq2d |
⊢ ( 𝑛 = 𝐵 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝐵 ) ) ) |
198 |
197
|
oveq2d |
⊢ ( 𝑛 = 𝐵 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) = ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) |
199 |
195 198
|
oveq12d |
⊢ ( 𝑛 = 𝐵 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) ) |
200 |
|
ovex |
⊢ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) ∈ V |
201 |
199 1 200
|
fvmpt |
⊢ ( 𝐵 ∈ ℕ → ( 𝐹 ‘ 𝐵 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) ) |
202 |
4 201
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) ) |
203 |
|
2fveq3 |
⊢ ( 𝑛 = 𝐴 → ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) = ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) |
204 |
203
|
oveq2d |
⊢ ( 𝑛 = 𝐴 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) |
205 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) |
206 |
205
|
oveq2d |
⊢ ( 𝑛 = 𝐴 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) = ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) |
207 |
204 206
|
oveq12d |
⊢ ( 𝑛 = 𝐴 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) ) |
208 |
|
oveq2 |
⊢ ( 𝑛 = 𝐴 → ( 2 · 𝑛 ) = ( 2 · 𝐴 ) ) |
209 |
208
|
fveq2d |
⊢ ( 𝑛 = 𝐴 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝐴 ) ) ) |
210 |
209
|
oveq2d |
⊢ ( 𝑛 = 𝐴 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) = ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) |
211 |
207 210
|
oveq12d |
⊢ ( 𝑛 = 𝐴 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
212 |
|
ovex |
⊢ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ∈ V |
213 |
211 1 212
|
fvmpt |
⊢ ( 𝐴 ∈ ℕ → ( 𝐹 ‘ 𝐴 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
214 |
3 213
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) |
215 |
202 214
|
breq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐵 ) < ( 𝐹 ‘ 𝐴 ) ↔ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐵 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐵 ) ) ) ) < ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝐴 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝐴 ) ) ) ) ) ) |
216 |
190 215
|
sylibrd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 → ( 𝐹 ‘ 𝐵 ) < ( 𝐹 ‘ 𝐴 ) ) ) |