| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bposlem7.1 | 
							⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝑛  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝑛 ) ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							bposlem7.2 | 
							⊢ 𝐺  =  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ 𝑥 )  /  𝑥 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							bposlem7.3 | 
							⊢ ( 𝜑  →  𝐴  ∈  ℕ )  | 
						
						
							| 4 | 
							
								
							 | 
							bposlem7.4 | 
							⊢ ( 𝜑  →  𝐵  ∈  ℕ )  | 
						
						
							| 5 | 
							
								
							 | 
							bposlem7.5 | 
							⊢ ( 𝜑  →  ( e ↑ 2 )  ≤  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							bposlem7.6 | 
							⊢ ( 𝜑  →  ( e ↑ 2 )  ≤  𝐵 )  | 
						
						
							| 7 | 
							
								4
							 | 
							nnrpd | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ+ )  | 
						
						
							| 8 | 
							
								7
							 | 
							rpsqrtcld | 
							⊢ ( 𝜑  →  ( √ ‘ 𝐵 )  ∈  ℝ+ )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( log ‘ 𝑥 )  =  ( log ‘ ( √ ‘ 𝐵 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  𝑥  =  ( √ ‘ 𝐵 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  ( √ ‘ 𝐵 )  →  ( ( log ‘ 𝑥 )  /  𝑥 )  =  ( ( log ‘ ( √ ‘ 𝐵 ) )  /  ( √ ‘ 𝐵 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ovex | 
							⊢ ( ( log ‘ ( √ ‘ 𝐵 ) )  /  ( √ ‘ 𝐵 ) )  ∈  V  | 
						
						
							| 13 | 
							
								11 2 12
							 | 
							fvmpt | 
							⊢ ( ( √ ‘ 𝐵 )  ∈  ℝ+  →  ( 𝐺 ‘ ( √ ‘ 𝐵 ) )  =  ( ( log ‘ ( √ ‘ 𝐵 ) )  /  ( √ ‘ 𝐵 ) ) )  | 
						
						
							| 14 | 
							
								8 13
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ ( √ ‘ 𝐵 ) )  =  ( ( log ‘ ( √ ‘ 𝐵 ) )  /  ( √ ‘ 𝐵 ) ) )  | 
						
						
							| 15 | 
							
								3
							 | 
							nnrpd | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ+ )  | 
						
						
							| 16 | 
							
								15
							 | 
							rpsqrtcld | 
							⊢ ( 𝜑  →  ( √ ‘ 𝐴 )  ∈  ℝ+ )  | 
						
						
							| 17 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( √ ‘ 𝐴 )  →  ( log ‘ 𝑥 )  =  ( log ‘ ( √ ‘ 𝐴 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( √ ‘ 𝐴 )  →  𝑥  =  ( √ ‘ 𝐴 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  ( √ ‘ 𝐴 )  →  ( ( log ‘ 𝑥 )  /  𝑥 )  =  ( ( log ‘ ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							ovex | 
							⊢ ( ( log ‘ ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) )  ∈  V  | 
						
						
							| 21 | 
							
								19 2 20
							 | 
							fvmpt | 
							⊢ ( ( √ ‘ 𝐴 )  ∈  ℝ+  →  ( 𝐺 ‘ ( √ ‘ 𝐴 ) )  =  ( ( log ‘ ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) ) )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ ( √ ‘ 𝐴 ) )  =  ( ( log ‘ ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) ) )  | 
						
						
							| 23 | 
							
								14 22
							 | 
							breq12d | 
							⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( √ ‘ 𝐵 ) )  <  ( 𝐺 ‘ ( √ ‘ 𝐴 ) )  ↔  ( ( log ‘ ( √ ‘ 𝐵 ) )  /  ( √ ‘ 𝐵 ) )  <  ( ( log ‘ ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) ) ) )  | 
						
						
							| 24 | 
							
								16
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( √ ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 25 | 
							
								15
							 | 
							rprege0d | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							resqrtth | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴 )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( √ ‘ 𝐴 ) ↑ 2 )  =  𝐴 )  | 
						
						
							| 28 | 
							
								5 27
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  ( e ↑ 2 )  ≤  ( ( √ ‘ 𝐴 ) ↑ 2 ) )  | 
						
						
							| 29 | 
							
								16
							 | 
							rpge0d | 
							⊢ ( 𝜑  →  0  ≤  ( √ ‘ 𝐴 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							ere | 
							⊢ e  ∈  ℝ  | 
						
						
							| 31 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 32 | 
							
								
							 | 
							epos | 
							⊢ 0  <  e  | 
						
						
							| 33 | 
							
								31 30 32
							 | 
							ltleii | 
							⊢ 0  ≤  e  | 
						
						
							| 34 | 
							
								
							 | 
							le2sq | 
							⊢ ( ( ( e  ∈  ℝ  ∧  0  ≤  e )  ∧  ( ( √ ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝐴 ) ) )  →  ( e  ≤  ( √ ‘ 𝐴 )  ↔  ( e ↑ 2 )  ≤  ( ( √ ‘ 𝐴 ) ↑ 2 ) ) )  | 
						
						
							| 35 | 
							
								30 33 34
							 | 
							mpanl12 | 
							⊢ ( ( ( √ ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝐴 ) )  →  ( e  ≤  ( √ ‘ 𝐴 )  ↔  ( e ↑ 2 )  ≤  ( ( √ ‘ 𝐴 ) ↑ 2 ) ) )  | 
						
						
							| 36 | 
							
								24 29 35
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( e  ≤  ( √ ‘ 𝐴 )  ↔  ( e ↑ 2 )  ≤  ( ( √ ‘ 𝐴 ) ↑ 2 ) ) )  | 
						
						
							| 37 | 
							
								28 36
							 | 
							mpbird | 
							⊢ ( 𝜑  →  e  ≤  ( √ ‘ 𝐴 ) )  | 
						
						
							| 38 | 
							
								8
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( √ ‘ 𝐵 )  ∈  ℝ )  | 
						
						
							| 39 | 
							
								7
							 | 
							rprege0d | 
							⊢ ( 𝜑  →  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							resqrtth | 
							⊢ ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  →  ( ( √ ‘ 𝐵 ) ↑ 2 )  =  𝐵 )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( √ ‘ 𝐵 ) ↑ 2 )  =  𝐵 )  | 
						
						
							| 42 | 
							
								6 41
							 | 
							breqtrrd | 
							⊢ ( 𝜑  →  ( e ↑ 2 )  ≤  ( ( √ ‘ 𝐵 ) ↑ 2 ) )  | 
						
						
							| 43 | 
							
								8
							 | 
							rpge0d | 
							⊢ ( 𝜑  →  0  ≤  ( √ ‘ 𝐵 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							le2sq | 
							⊢ ( ( ( e  ∈  ℝ  ∧  0  ≤  e )  ∧  ( ( √ ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝐵 ) ) )  →  ( e  ≤  ( √ ‘ 𝐵 )  ↔  ( e ↑ 2 )  ≤  ( ( √ ‘ 𝐵 ) ↑ 2 ) ) )  | 
						
						
							| 45 | 
							
								30 33 44
							 | 
							mpanl12 | 
							⊢ ( ( ( √ ‘ 𝐵 )  ∈  ℝ  ∧  0  ≤  ( √ ‘ 𝐵 ) )  →  ( e  ≤  ( √ ‘ 𝐵 )  ↔  ( e ↑ 2 )  ≤  ( ( √ ‘ 𝐵 ) ↑ 2 ) ) )  | 
						
						
							| 46 | 
							
								38 43 45
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( e  ≤  ( √ ‘ 𝐵 )  ↔  ( e ↑ 2 )  ≤  ( ( √ ‘ 𝐵 ) ↑ 2 ) ) )  | 
						
						
							| 47 | 
							
								42 46
							 | 
							mpbird | 
							⊢ ( 𝜑  →  e  ≤  ( √ ‘ 𝐵 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							logdivlt | 
							⊢ ( ( ( ( √ ‘ 𝐴 )  ∈  ℝ  ∧  e  ≤  ( √ ‘ 𝐴 ) )  ∧  ( ( √ ‘ 𝐵 )  ∈  ℝ  ∧  e  ≤  ( √ ‘ 𝐵 ) ) )  →  ( ( √ ‘ 𝐴 )  <  ( √ ‘ 𝐵 )  ↔  ( ( log ‘ ( √ ‘ 𝐵 ) )  /  ( √ ‘ 𝐵 ) )  <  ( ( log ‘ ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) ) ) )  | 
						
						
							| 49 | 
							
								24 37 38 47 48
							 | 
							syl22anc | 
							⊢ ( 𝜑  →  ( ( √ ‘ 𝐴 )  <  ( √ ‘ 𝐵 )  ↔  ( ( log ‘ ( √ ‘ 𝐵 ) )  /  ( √ ‘ 𝐵 ) )  <  ( ( log ‘ ( √ ‘ 𝐴 ) )  /  ( √ ‘ 𝐴 ) ) ) )  | 
						
						
							| 50 | 
							
								24 38 29 43
							 | 
							lt2sqd | 
							⊢ ( 𝜑  →  ( ( √ ‘ 𝐴 )  <  ( √ ‘ 𝐵 )  ↔  ( ( √ ‘ 𝐴 ) ↑ 2 )  <  ( ( √ ‘ 𝐵 ) ↑ 2 ) ) )  | 
						
						
							| 51 | 
							
								23 49 50
							 | 
							3bitr2rd | 
							⊢ ( 𝜑  →  ( ( ( √ ‘ 𝐴 ) ↑ 2 )  <  ( ( √ ‘ 𝐵 ) ↑ 2 )  ↔  ( 𝐺 ‘ ( √ ‘ 𝐵 ) )  <  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) )  | 
						
						
							| 52 | 
							
								27 41
							 | 
							breq12d | 
							⊢ ( 𝜑  →  ( ( ( √ ‘ 𝐴 ) ↑ 2 )  <  ( ( √ ‘ 𝐵 ) ↑ 2 )  ↔  𝐴  <  𝐵 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							relogcl | 
							⊢ ( 𝑥  ∈  ℝ+  →  ( log ‘ 𝑥 )  ∈  ℝ )  | 
						
						
							| 54 | 
							
								
							 | 
							rerpdivcl | 
							⊢ ( ( ( log ‘ 𝑥 )  ∈  ℝ  ∧  𝑥  ∈  ℝ+ )  →  ( ( log ‘ 𝑥 )  /  𝑥 )  ∈  ℝ )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							mpancom | 
							⊢ ( 𝑥  ∈  ℝ+  →  ( ( log ‘ 𝑥 )  /  𝑥 )  ∈  ℝ )  | 
						
						
							| 56 | 
							
								2 55
							 | 
							fmpti | 
							⊢ 𝐺 : ℝ+ ⟶ ℝ  | 
						
						
							| 57 | 
							
								56
							 | 
							ffvelcdmi | 
							⊢ ( ( √ ‘ 𝐵 )  ∈  ℝ+  →  ( 𝐺 ‘ ( √ ‘ 𝐵 ) )  ∈  ℝ )  | 
						
						
							| 58 | 
							
								8 57
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ ( √ ‘ 𝐵 ) )  ∈  ℝ )  | 
						
						
							| 59 | 
							
								56
							 | 
							ffvelcdmi | 
							⊢ ( ( √ ‘ 𝐴 )  ∈  ℝ+  →  ( 𝐺 ‘ ( √ ‘ 𝐴 ) )  ∈  ℝ )  | 
						
						
							| 60 | 
							
								16 59
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ ( √ ‘ 𝐴 ) )  ∈  ℝ )  | 
						
						
							| 61 | 
							
								
							 | 
							2rp | 
							⊢ 2  ∈  ℝ+  | 
						
						
							| 62 | 
							
								
							 | 
							rpsqrtcl | 
							⊢ ( 2  ∈  ℝ+  →  ( √ ‘ 2 )  ∈  ℝ+ )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							mp1i | 
							⊢ ( 𝜑  →  ( √ ‘ 2 )  ∈  ℝ+ )  | 
						
						
							| 64 | 
							
								58 60 63
							 | 
							ltmul2d | 
							⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( √ ‘ 𝐵 ) )  <  ( 𝐺 ‘ ( √ ‘ 𝐴 ) )  ↔  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  <  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 65 | 
							
								51 52 64
							 | 
							3bitr3d | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  <  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							biimpd | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  →  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  <  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) ) )  | 
						
						
							| 67 | 
							
								3
							 | 
							nnred | 
							⊢ ( 𝜑  →  𝐴  ∈  ℝ )  | 
						
						
							| 68 | 
							
								4
							 | 
							nnred | 
							⊢ ( 𝜑  →  𝐵  ∈  ℝ )  | 
						
						
							| 69 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 70 | 
							
								
							 | 
							2pos | 
							⊢ 0  <  2  | 
						
						
							| 71 | 
							
								69 70
							 | 
							pm3.2i | 
							⊢ ( 2  ∈  ℝ  ∧  0  <  2 )  | 
						
						
							| 72 | 
							
								71
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 2  ∈  ℝ  ∧  0  <  2 ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ltdiv1 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  /  2 )  <  ( 𝐵  /  2 ) ) )  | 
						
						
							| 74 | 
							
								67 68 72 73
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  ( 𝐴  /  2 )  <  ( 𝐵  /  2 ) ) )  | 
						
						
							| 75 | 
							
								15
							 | 
							rphalfcld | 
							⊢ ( 𝜑  →  ( 𝐴  /  2 )  ∈  ℝ+ )  | 
						
						
							| 76 | 
							
								75
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( 𝐴  /  2 )  ∈  ℝ )  | 
						
						
							| 77 | 
							
								30 69
							 | 
							remulcli | 
							⊢ ( e  ·  2 )  ∈  ℝ  | 
						
						
							| 78 | 
							
								77
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( e  ·  2 )  ∈  ℝ )  | 
						
						
							| 79 | 
							
								30
							 | 
							resqcli | 
							⊢ ( e ↑ 2 )  ∈  ℝ  | 
						
						
							| 80 | 
							
								79
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( e ↑ 2 )  ∈  ℝ )  | 
						
						
							| 81 | 
							
								
							 | 
							egt2lt3 | 
							⊢ ( 2  <  e  ∧  e  <  3 )  | 
						
						
							| 82 | 
							
								81
							 | 
							simpli | 
							⊢ 2  <  e  | 
						
						
							| 83 | 
							
								69 30 82
							 | 
							ltleii | 
							⊢ 2  ≤  e  | 
						
						
							| 84 | 
							
								69 30 30
							 | 
							lemul2i | 
							⊢ ( 0  <  e  →  ( 2  ≤  e  ↔  ( e  ·  2 )  ≤  ( e  ·  e ) ) )  | 
						
						
							| 85 | 
							
								32 84
							 | 
							ax-mp | 
							⊢ ( 2  ≤  e  ↔  ( e  ·  2 )  ≤  ( e  ·  e ) )  | 
						
						
							| 86 | 
							
								83 85
							 | 
							mpbi | 
							⊢ ( e  ·  2 )  ≤  ( e  ·  e )  | 
						
						
							| 87 | 
							
								30
							 | 
							recni | 
							⊢ e  ∈  ℂ  | 
						
						
							| 88 | 
							
								87
							 | 
							sqvali | 
							⊢ ( e ↑ 2 )  =  ( e  ·  e )  | 
						
						
							| 89 | 
							
								86 88
							 | 
							breqtrri | 
							⊢ ( e  ·  2 )  ≤  ( e ↑ 2 )  | 
						
						
							| 90 | 
							
								89
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( e  ·  2 )  ≤  ( e ↑ 2 ) )  | 
						
						
							| 91 | 
							
								78 80 67 90 5
							 | 
							letrd | 
							⊢ ( 𝜑  →  ( e  ·  2 )  ≤  𝐴 )  | 
						
						
							| 92 | 
							
								
							 | 
							lemuldiv | 
							⊢ ( ( e  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( e  ·  2 )  ≤  𝐴  ↔  e  ≤  ( 𝐴  /  2 ) ) )  | 
						
						
							| 93 | 
							
								30 71 92
							 | 
							mp3an13 | 
							⊢ ( 𝐴  ∈  ℝ  →  ( ( e  ·  2 )  ≤  𝐴  ↔  e  ≤  ( 𝐴  /  2 ) ) )  | 
						
						
							| 94 | 
							
								67 93
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( e  ·  2 )  ≤  𝐴  ↔  e  ≤  ( 𝐴  /  2 ) ) )  | 
						
						
							| 95 | 
							
								91 94
							 | 
							mpbid | 
							⊢ ( 𝜑  →  e  ≤  ( 𝐴  /  2 ) )  | 
						
						
							| 96 | 
							
								7
							 | 
							rphalfcld | 
							⊢ ( 𝜑  →  ( 𝐵  /  2 )  ∈  ℝ+ )  | 
						
						
							| 97 | 
							
								96
							 | 
							rpred | 
							⊢ ( 𝜑  →  ( 𝐵  /  2 )  ∈  ℝ )  | 
						
						
							| 98 | 
							
								78 80 68 90 6
							 | 
							letrd | 
							⊢ ( 𝜑  →  ( e  ·  2 )  ≤  𝐵 )  | 
						
						
							| 99 | 
							
								
							 | 
							lemuldiv | 
							⊢ ( ( e  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( e  ·  2 )  ≤  𝐵  ↔  e  ≤  ( 𝐵  /  2 ) ) )  | 
						
						
							| 100 | 
							
								30 71 99
							 | 
							mp3an13 | 
							⊢ ( 𝐵  ∈  ℝ  →  ( ( e  ·  2 )  ≤  𝐵  ↔  e  ≤  ( 𝐵  /  2 ) ) )  | 
						
						
							| 101 | 
							
								68 100
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( e  ·  2 )  ≤  𝐵  ↔  e  ≤  ( 𝐵  /  2 ) ) )  | 
						
						
							| 102 | 
							
								98 101
							 | 
							mpbid | 
							⊢ ( 𝜑  →  e  ≤  ( 𝐵  /  2 ) )  | 
						
						
							| 103 | 
							
								
							 | 
							logdivlt | 
							⊢ ( ( ( ( 𝐴  /  2 )  ∈  ℝ  ∧  e  ≤  ( 𝐴  /  2 ) )  ∧  ( ( 𝐵  /  2 )  ∈  ℝ  ∧  e  ≤  ( 𝐵  /  2 ) ) )  →  ( ( 𝐴  /  2 )  <  ( 𝐵  /  2 )  ↔  ( ( log ‘ ( 𝐵  /  2 ) )  /  ( 𝐵  /  2 ) )  <  ( ( log ‘ ( 𝐴  /  2 ) )  /  ( 𝐴  /  2 ) ) ) )  | 
						
						
							| 104 | 
							
								76 95 97 102 103
							 | 
							syl22anc | 
							⊢ ( 𝜑  →  ( ( 𝐴  /  2 )  <  ( 𝐵  /  2 )  ↔  ( ( log ‘ ( 𝐵  /  2 ) )  /  ( 𝐵  /  2 ) )  <  ( ( log ‘ ( 𝐴  /  2 ) )  /  ( 𝐴  /  2 ) ) ) )  | 
						
						
							| 105 | 
							
								74 104
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  ( ( log ‘ ( 𝐵  /  2 ) )  /  ( 𝐵  /  2 ) )  <  ( ( log ‘ ( 𝐴  /  2 ) )  /  ( 𝐴  /  2 ) ) ) )  | 
						
						
							| 106 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( 𝐵  /  2 )  →  ( log ‘ 𝑥 )  =  ( log ‘ ( 𝐵  /  2 ) ) )  | 
						
						
							| 107 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( 𝐵  /  2 )  →  𝑥  =  ( 𝐵  /  2 ) )  | 
						
						
							| 108 | 
							
								106 107
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  ( 𝐵  /  2 )  →  ( ( log ‘ 𝑥 )  /  𝑥 )  =  ( ( log ‘ ( 𝐵  /  2 ) )  /  ( 𝐵  /  2 ) ) )  | 
						
						
							| 109 | 
							
								
							 | 
							ovex | 
							⊢ ( ( log ‘ ( 𝐵  /  2 ) )  /  ( 𝐵  /  2 ) )  ∈  V  | 
						
						
							| 110 | 
							
								108 2 109
							 | 
							fvmpt | 
							⊢ ( ( 𝐵  /  2 )  ∈  ℝ+  →  ( 𝐺 ‘ ( 𝐵  /  2 ) )  =  ( ( log ‘ ( 𝐵  /  2 ) )  /  ( 𝐵  /  2 ) ) )  | 
						
						
							| 111 | 
							
								96 110
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐵  /  2 ) )  =  ( ( log ‘ ( 𝐵  /  2 ) )  /  ( 𝐵  /  2 ) ) )  | 
						
						
							| 112 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( 𝐴  /  2 )  →  ( log ‘ 𝑥 )  =  ( log ‘ ( 𝐴  /  2 ) ) )  | 
						
						
							| 113 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  ( 𝐴  /  2 )  →  𝑥  =  ( 𝐴  /  2 ) )  | 
						
						
							| 114 | 
							
								112 113
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  ( 𝐴  /  2 )  →  ( ( log ‘ 𝑥 )  /  𝑥 )  =  ( ( log ‘ ( 𝐴  /  2 ) )  /  ( 𝐴  /  2 ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							ovex | 
							⊢ ( ( log ‘ ( 𝐴  /  2 ) )  /  ( 𝐴  /  2 ) )  ∈  V  | 
						
						
							| 116 | 
							
								114 2 115
							 | 
							fvmpt | 
							⊢ ( ( 𝐴  /  2 )  ∈  ℝ+  →  ( 𝐺 ‘ ( 𝐴  /  2 ) )  =  ( ( log ‘ ( 𝐴  /  2 ) )  /  ( 𝐴  /  2 ) ) )  | 
						
						
							| 117 | 
							
								75 116
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐴  /  2 ) )  =  ( ( log ‘ ( 𝐴  /  2 ) )  /  ( 𝐴  /  2 ) ) )  | 
						
						
							| 118 | 
							
								111 117
							 | 
							breq12d | 
							⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( 𝐵  /  2 ) )  <  ( 𝐺 ‘ ( 𝐴  /  2 ) )  ↔  ( ( log ‘ ( 𝐵  /  2 ) )  /  ( 𝐵  /  2 ) )  <  ( ( log ‘ ( 𝐴  /  2 ) )  /  ( 𝐴  /  2 ) ) ) )  | 
						
						
							| 119 | 
							
								56
							 | 
							ffvelcdmi | 
							⊢ ( ( 𝐵  /  2 )  ∈  ℝ+  →  ( 𝐺 ‘ ( 𝐵  /  2 ) )  ∈  ℝ )  | 
						
						
							| 120 | 
							
								96 119
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐵  /  2 ) )  ∈  ℝ )  | 
						
						
							| 121 | 
							
								56
							 | 
							ffvelcdmi | 
							⊢ ( ( 𝐴  /  2 )  ∈  ℝ+  →  ( 𝐺 ‘ ( 𝐴  /  2 ) )  ∈  ℝ )  | 
						
						
							| 122 | 
							
								75 121
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝐴  /  2 ) )  ∈  ℝ )  | 
						
						
							| 123 | 
							
								
							 | 
							9nn | 
							⊢ 9  ∈  ℕ  | 
						
						
							| 124 | 
							
								
							 | 
							4nn | 
							⊢ 4  ∈  ℕ  | 
						
						
							| 125 | 
							
								
							 | 
							nnrp | 
							⊢ ( 9  ∈  ℕ  →  9  ∈  ℝ+ )  | 
						
						
							| 126 | 
							
								
							 | 
							nnrp | 
							⊢ ( 4  ∈  ℕ  →  4  ∈  ℝ+ )  | 
						
						
							| 127 | 
							
								
							 | 
							rpdivcl | 
							⊢ ( ( 9  ∈  ℝ+  ∧  4  ∈  ℝ+ )  →  ( 9  /  4 )  ∈  ℝ+ )  | 
						
						
							| 128 | 
							
								125 126 127
							 | 
							syl2an | 
							⊢ ( ( 9  ∈  ℕ  ∧  4  ∈  ℕ )  →  ( 9  /  4 )  ∈  ℝ+ )  | 
						
						
							| 129 | 
							
								123 124 128
							 | 
							mp2an | 
							⊢ ( 9  /  4 )  ∈  ℝ+  | 
						
						
							| 130 | 
							
								129
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 9  /  4 )  ∈  ℝ+ )  | 
						
						
							| 131 | 
							
								120 122 130
							 | 
							ltmul2d | 
							⊢ ( 𝜑  →  ( ( 𝐺 ‘ ( 𝐵  /  2 ) )  <  ( 𝐺 ‘ ( 𝐴  /  2 ) )  ↔  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  <  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) ) )  | 
						
						
							| 132 | 
							
								105 118 131
							 | 
							3bitr2d | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  <  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) ) )  | 
						
						
							| 133 | 
							
								132
							 | 
							biimpd | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  →  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  <  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) ) )  | 
						
						
							| 134 | 
							
								66 133
							 | 
							jcad | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  →  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  <  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  ∧  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  <  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) ) ) )  | 
						
						
							| 135 | 
							
								
							 | 
							sqrt2re | 
							⊢ ( √ ‘ 2 )  ∈  ℝ  | 
						
						
							| 136 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( ( √ ‘ 2 )  ∈  ℝ  ∧  ( 𝐺 ‘ ( √ ‘ 𝐵 ) )  ∈  ℝ )  →  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  ∈  ℝ )  | 
						
						
							| 137 | 
							
								135 58 136
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  ∈  ℝ )  | 
						
						
							| 138 | 
							
								
							 | 
							9re | 
							⊢ 9  ∈  ℝ  | 
						
						
							| 139 | 
							
								
							 | 
							4re | 
							⊢ 4  ∈  ℝ  | 
						
						
							| 140 | 
							
								
							 | 
							4ne0 | 
							⊢ 4  ≠  0  | 
						
						
							| 141 | 
							
								138 139 140
							 | 
							redivcli | 
							⊢ ( 9  /  4 )  ∈  ℝ  | 
						
						
							| 142 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( ( 9  /  4 )  ∈  ℝ  ∧  ( 𝐺 ‘ ( 𝐵  /  2 ) )  ∈  ℝ )  →  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  ∈  ℝ )  | 
						
						
							| 143 | 
							
								141 120 142
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  ∈  ℝ )  | 
						
						
							| 144 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( ( √ ‘ 2 )  ∈  ℝ  ∧  ( 𝐺 ‘ ( √ ‘ 𝐴 ) )  ∈  ℝ )  →  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 145 | 
							
								135 60 144
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 146 | 
							
								
							 | 
							remulcl | 
							⊢ ( ( ( 9  /  4 )  ∈  ℝ  ∧  ( 𝐺 ‘ ( 𝐴  /  2 ) )  ∈  ℝ )  →  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) )  ∈  ℝ )  | 
						
						
							| 147 | 
							
								141 122 146
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) )  ∈  ℝ )  | 
						
						
							| 148 | 
							
								
							 | 
							lt2add | 
							⊢ ( ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  ∈  ℝ  ∧  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  ∈  ℝ )  ∧  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  ∈  ℝ  ∧  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) )  ∈  ℝ ) )  →  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  <  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  ∧  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  <  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  →  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  <  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) ) ) )  | 
						
						
							| 149 | 
							
								137 143 145 147 148
							 | 
							syl22anc | 
							⊢ ( 𝜑  →  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  <  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  ∧  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  <  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  →  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  <  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) ) ) )  | 
						
						
							| 150 | 
							
								134 149
							 | 
							syld | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  →  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  <  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) ) ) )  | 
						
						
							| 151 | 
							
								
							 | 
							ltmul2 | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝐴  <  𝐵  ↔  ( 2  ·  𝐴 )  <  ( 2  ·  𝐵 ) ) )  | 
						
						
							| 152 | 
							
								67 68 72 151
							 | 
							syl3anc | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  ( 2  ·  𝐴 )  <  ( 2  ·  𝐵 ) ) )  | 
						
						
							| 153 | 
							
								
							 | 
							rpmulcl | 
							⊢ ( ( 2  ∈  ℝ+  ∧  𝐴  ∈  ℝ+ )  →  ( 2  ·  𝐴 )  ∈  ℝ+ )  | 
						
						
							| 154 | 
							
								61 15 153
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2  ·  𝐴 )  ∈  ℝ+ )  | 
						
						
							| 155 | 
							
								154
							 | 
							rpsqrtcld | 
							⊢ ( 𝜑  →  ( √ ‘ ( 2  ·  𝐴 ) )  ∈  ℝ+ )  | 
						
						
							| 156 | 
							
								
							 | 
							rpmulcl | 
							⊢ ( ( 2  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ )  →  ( 2  ·  𝐵 )  ∈  ℝ+ )  | 
						
						
							| 157 | 
							
								61 7 156
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( 2  ·  𝐵 )  ∈  ℝ+ )  | 
						
						
							| 158 | 
							
								157
							 | 
							rpsqrtcld | 
							⊢ ( 𝜑  →  ( √ ‘ ( 2  ·  𝐵 ) )  ∈  ℝ+ )  | 
						
						
							| 159 | 
							
								
							 | 
							rprege0 | 
							⊢ ( ( √ ‘ ( 2  ·  𝐴 ) )  ∈  ℝ+  →  ( ( √ ‘ ( 2  ·  𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( √ ‘ ( 2  ·  𝐴 ) ) ) )  | 
						
						
							| 160 | 
							
								
							 | 
							rprege0 | 
							⊢ ( ( √ ‘ ( 2  ·  𝐵 ) )  ∈  ℝ+  →  ( ( √ ‘ ( 2  ·  𝐵 ) )  ∈  ℝ  ∧  0  ≤  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  | 
						
						
							| 161 | 
							
								
							 | 
							lt2sq | 
							⊢ ( ( ( ( √ ‘ ( 2  ·  𝐴 ) )  ∈  ℝ  ∧  0  ≤  ( √ ‘ ( 2  ·  𝐴 ) ) )  ∧  ( ( √ ‘ ( 2  ·  𝐵 ) )  ∈  ℝ  ∧  0  ≤  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  →  ( ( √ ‘ ( 2  ·  𝐴 ) )  <  ( √ ‘ ( 2  ·  𝐵 ) )  ↔  ( ( √ ‘ ( 2  ·  𝐴 ) ) ↑ 2 )  <  ( ( √ ‘ ( 2  ·  𝐵 ) ) ↑ 2 ) ) )  | 
						
						
							| 162 | 
							
								159 160 161
							 | 
							syl2an | 
							⊢ ( ( ( √ ‘ ( 2  ·  𝐴 ) )  ∈  ℝ+  ∧  ( √ ‘ ( 2  ·  𝐵 ) )  ∈  ℝ+ )  →  ( ( √ ‘ ( 2  ·  𝐴 ) )  <  ( √ ‘ ( 2  ·  𝐵 ) )  ↔  ( ( √ ‘ ( 2  ·  𝐴 ) ) ↑ 2 )  <  ( ( √ ‘ ( 2  ·  𝐵 ) ) ↑ 2 ) ) )  | 
						
						
							| 163 | 
							
								155 158 162
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝐴 ) )  <  ( √ ‘ ( 2  ·  𝐵 ) )  ↔  ( ( √ ‘ ( 2  ·  𝐴 ) ) ↑ 2 )  <  ( ( √ ‘ ( 2  ·  𝐵 ) ) ↑ 2 ) ) )  | 
						
						
							| 164 | 
							
								154
							 | 
							rprege0d | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐴 )  ∈  ℝ  ∧  0  ≤  ( 2  ·  𝐴 ) ) )  | 
						
						
							| 165 | 
							
								
							 | 
							resqrtth | 
							⊢ ( ( ( 2  ·  𝐴 )  ∈  ℝ  ∧  0  ≤  ( 2  ·  𝐴 ) )  →  ( ( √ ‘ ( 2  ·  𝐴 ) ) ↑ 2 )  =  ( 2  ·  𝐴 ) )  | 
						
						
							| 166 | 
							
								164 165
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝐴 ) ) ↑ 2 )  =  ( 2  ·  𝐴 ) )  | 
						
						
							| 167 | 
							
								157
							 | 
							rprege0d | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐵 )  ∈  ℝ  ∧  0  ≤  ( 2  ·  𝐵 ) ) )  | 
						
						
							| 168 | 
							
								
							 | 
							resqrtth | 
							⊢ ( ( ( 2  ·  𝐵 )  ∈  ℝ  ∧  0  ≤  ( 2  ·  𝐵 ) )  →  ( ( √ ‘ ( 2  ·  𝐵 ) ) ↑ 2 )  =  ( 2  ·  𝐵 ) )  | 
						
						
							| 169 | 
							
								167 168
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝐵 ) ) ↑ 2 )  =  ( 2  ·  𝐵 ) )  | 
						
						
							| 170 | 
							
								166 169
							 | 
							breq12d | 
							⊢ ( 𝜑  →  ( ( ( √ ‘ ( 2  ·  𝐴 ) ) ↑ 2 )  <  ( ( √ ‘ ( 2  ·  𝐵 ) ) ↑ 2 )  ↔  ( 2  ·  𝐴 )  <  ( 2  ·  𝐵 ) ) )  | 
						
						
							| 171 | 
							
								163 170
							 | 
							bitr2d | 
							⊢ ( 𝜑  →  ( ( 2  ·  𝐴 )  <  ( 2  ·  𝐵 )  ↔  ( √ ‘ ( 2  ·  𝐴 ) )  <  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  | 
						
						
							| 172 | 
							
								
							 | 
							1lt2 | 
							⊢ 1  <  2  | 
						
						
							| 173 | 
							
								
							 | 
							rplogcl | 
							⊢ ( ( 2  ∈  ℝ  ∧  1  <  2 )  →  ( log ‘ 2 )  ∈  ℝ+ )  | 
						
						
							| 174 | 
							
								69 172 173
							 | 
							mp2an | 
							⊢ ( log ‘ 2 )  ∈  ℝ+  | 
						
						
							| 175 | 
							
								174
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( log ‘ 2 )  ∈  ℝ+ )  | 
						
						
							| 176 | 
							
								155 158 175
							 | 
							ltdiv2d | 
							⊢ ( 𝜑  →  ( ( √ ‘ ( 2  ·  𝐴 ) )  <  ( √ ‘ ( 2  ·  𝐵 ) )  ↔  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  <  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) )  | 
						
						
							| 177 | 
							
								152 171 176
							 | 
							3bitrd | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  ↔  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  <  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) )  | 
						
						
							| 178 | 
							
								177
							 | 
							biimpd | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  →  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  <  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) )  | 
						
						
							| 179 | 
							
								150 178
							 | 
							jcad | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  →  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  <  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  ∧  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  <  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) ) )  | 
						
						
							| 180 | 
							
								137 143
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  ∈  ℝ )  | 
						
						
							| 181 | 
							
								
							 | 
							rpre | 
							⊢ ( ( log ‘ 2 )  ∈  ℝ+  →  ( log ‘ 2 )  ∈  ℝ )  | 
						
						
							| 182 | 
							
								174 181
							 | 
							ax-mp | 
							⊢ ( log ‘ 2 )  ∈  ℝ  | 
						
						
							| 183 | 
							
								
							 | 
							rerpdivcl | 
							⊢ ( ( ( log ‘ 2 )  ∈  ℝ  ∧  ( √ ‘ ( 2  ·  𝐵 ) )  ∈  ℝ+ )  →  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  ∈  ℝ )  | 
						
						
							| 184 | 
							
								182 158 183
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  ∈  ℝ )  | 
						
						
							| 185 | 
							
								145 147
							 | 
							readdcld | 
							⊢ ( 𝜑  →  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  ∈  ℝ )  | 
						
						
							| 186 | 
							
								
							 | 
							rerpdivcl | 
							⊢ ( ( ( log ‘ 2 )  ∈  ℝ  ∧  ( √ ‘ ( 2  ·  𝐴 ) )  ∈  ℝ+ )  →  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 187 | 
							
								182 155 186
							 | 
							sylancr | 
							⊢ ( 𝜑  →  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) )  ∈  ℝ )  | 
						
						
							| 188 | 
							
								
							 | 
							lt2add | 
							⊢ ( ( ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  ∈  ℝ  ∧  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  ∈  ℝ )  ∧  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  ∈  ℝ  ∧  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) )  ∈  ℝ ) )  →  ( ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  <  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  ∧  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  <  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) )  →  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  <  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) ) )  | 
						
						
							| 189 | 
							
								180 184 185 187 188
							 | 
							syl22anc | 
							⊢ ( 𝜑  →  ( ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  <  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  ∧  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) )  <  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) )  →  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  <  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) ) )  | 
						
						
							| 190 | 
							
								179 189
							 | 
							syld | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  →  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  <  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) ) )  | 
						
						
							| 191 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑛  =  𝐵  →  ( 𝐺 ‘ ( √ ‘ 𝑛 ) )  =  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  | 
						
						
							| 192 | 
							
								191
							 | 
							oveq2d | 
							⊢ ( 𝑛  =  𝐵  →  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) )  =  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) ) )  | 
						
						
							| 193 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑛  =  𝐵  →  ( 𝐺 ‘ ( 𝑛  /  2 ) )  =  ( 𝐺 ‘ ( 𝐵  /  2 ) ) )  | 
						
						
							| 194 | 
							
								193
							 | 
							oveq2d | 
							⊢ ( 𝑛  =  𝐵  →  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝑛  /  2 ) ) )  =  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  | 
						
						
							| 195 | 
							
								192 194
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝐵  →  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝑛  /  2 ) ) ) )  =  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) ) )  | 
						
						
							| 196 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝐵  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝐵 ) )  | 
						
						
							| 197 | 
							
								196
							 | 
							fveq2d | 
							⊢ ( 𝑛  =  𝐵  →  ( √ ‘ ( 2  ·  𝑛 ) )  =  ( √ ‘ ( 2  ·  𝐵 ) ) )  | 
						
						
							| 198 | 
							
								197
							 | 
							oveq2d | 
							⊢ ( 𝑛  =  𝐵  →  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝑛 ) ) )  =  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  | 
						
						
							| 199 | 
							
								195 198
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝐵  →  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝑛  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝑛 ) ) ) )  =  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) ) )  | 
						
						
							| 200 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  ∈  V  | 
						
						
							| 201 | 
							
								199 1 200
							 | 
							fvmpt | 
							⊢ ( 𝐵  ∈  ℕ  →  ( 𝐹 ‘ 𝐵 )  =  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) ) )  | 
						
						
							| 202 | 
							
								4 201
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐵 )  =  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) ) )  | 
						
						
							| 203 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑛  =  𝐴  →  ( 𝐺 ‘ ( √ ‘ 𝑛 ) )  =  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  | 
						
						
							| 204 | 
							
								203
							 | 
							oveq2d | 
							⊢ ( 𝑛  =  𝐴  →  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) )  =  ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) ) )  | 
						
						
							| 205 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑛  =  𝐴  →  ( 𝐺 ‘ ( 𝑛  /  2 ) )  =  ( 𝐺 ‘ ( 𝐴  /  2 ) ) )  | 
						
						
							| 206 | 
							
								205
							 | 
							oveq2d | 
							⊢ ( 𝑛  =  𝐴  →  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝑛  /  2 ) ) )  =  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  | 
						
						
							| 207 | 
							
								204 206
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝐴  →  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝑛  /  2 ) ) ) )  =  ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) ) )  | 
						
						
							| 208 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑛  =  𝐴  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝐴 ) )  | 
						
						
							| 209 | 
							
								208
							 | 
							fveq2d | 
							⊢ ( 𝑛  =  𝐴  →  ( √ ‘ ( 2  ·  𝑛 ) )  =  ( √ ‘ ( 2  ·  𝐴 ) ) )  | 
						
						
							| 210 | 
							
								209
							 | 
							oveq2d | 
							⊢ ( 𝑛  =  𝐴  →  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝑛 ) ) )  =  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) )  | 
						
						
							| 211 | 
							
								207 210
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝐴  →  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝑛  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝑛 ) ) ) )  =  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) )  | 
						
						
							| 212 | 
							
								
							 | 
							ovex | 
							⊢ ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) )  ∈  V  | 
						
						
							| 213 | 
							
								211 1 212
							 | 
							fvmpt | 
							⊢ ( 𝐴  ∈  ℕ  →  ( 𝐹 ‘ 𝐴 )  =  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) )  | 
						
						
							| 214 | 
							
								3 213
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) )  | 
						
						
							| 215 | 
							
								202 214
							 | 
							breq12d | 
							⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝐵 )  <  ( 𝐹 ‘ 𝐴 )  ↔  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐵 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐵  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐵 ) ) ) )  <  ( ( ( ( √ ‘ 2 )  ·  ( 𝐺 ‘ ( √ ‘ 𝐴 ) ) )  +  ( ( 9  /  4 )  ·  ( 𝐺 ‘ ( 𝐴  /  2 ) ) ) )  +  ( ( log ‘ 2 )  /  ( √ ‘ ( 2  ·  𝐴 ) ) ) ) ) )  | 
						
						
							| 216 | 
							
								190 215
							 | 
							sylibrd | 
							⊢ ( 𝜑  →  ( 𝐴  <  𝐵  →  ( 𝐹 ‘ 𝐵 )  <  ( 𝐹 ‘ 𝐴 ) ) )  |