Step |
Hyp |
Ref |
Expression |
1 |
|
bposlem7.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) ) |
2 |
|
bposlem7.2 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) / 𝑥 ) ) |
3 |
|
bposlem9.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
bposlem9.4 |
⊢ ( 𝜑 → ; 6 4 < 𝑁 ) |
5 |
|
bposlem9.5 |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ) |
6 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
7 |
|
4nn |
⊢ 4 ∈ ℕ |
8 |
6 7
|
decnncl |
⊢ ; 6 4 ∈ ℕ |
9 |
8
|
a1i |
⊢ ( 𝜑 → ; 6 4 ∈ ℕ ) |
10 |
|
ere |
⊢ e ∈ ℝ |
11 |
|
8re |
⊢ 8 ∈ ℝ |
12 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
13 |
12
|
simpri |
⊢ e < 3 |
14 |
|
3lt8 |
⊢ 3 < 8 |
15 |
|
3re |
⊢ 3 ∈ ℝ |
16 |
10 15 11
|
lttri |
⊢ ( ( e < 3 ∧ 3 < 8 ) → e < 8 ) |
17 |
13 14 16
|
mp2an |
⊢ e < 8 |
18 |
10 11 17
|
ltleii |
⊢ e ≤ 8 |
19 |
|
0re |
⊢ 0 ∈ ℝ |
20 |
|
epos |
⊢ 0 < e |
21 |
19 10 20
|
ltleii |
⊢ 0 ≤ e |
22 |
|
8pos |
⊢ 0 < 8 |
23 |
19 11 22
|
ltleii |
⊢ 0 ≤ 8 |
24 |
|
le2sq |
⊢ ( ( ( e ∈ ℝ ∧ 0 ≤ e ) ∧ ( 8 ∈ ℝ ∧ 0 ≤ 8 ) ) → ( e ≤ 8 ↔ ( e ↑ 2 ) ≤ ( 8 ↑ 2 ) ) ) |
25 |
10 21 11 23 24
|
mp4an |
⊢ ( e ≤ 8 ↔ ( e ↑ 2 ) ≤ ( 8 ↑ 2 ) ) |
26 |
18 25
|
mpbi |
⊢ ( e ↑ 2 ) ≤ ( 8 ↑ 2 ) |
27 |
11
|
recni |
⊢ 8 ∈ ℂ |
28 |
27
|
sqvali |
⊢ ( 8 ↑ 2 ) = ( 8 · 8 ) |
29 |
|
8t8e64 |
⊢ ( 8 · 8 ) = ; 6 4 |
30 |
28 29
|
eqtri |
⊢ ( 8 ↑ 2 ) = ; 6 4 |
31 |
26 30
|
breqtri |
⊢ ( e ↑ 2 ) ≤ ; 6 4 |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ ; 6 4 ) |
33 |
10
|
resqcli |
⊢ ( e ↑ 2 ) ∈ ℝ |
34 |
33
|
a1i |
⊢ ( 𝜑 → ( e ↑ 2 ) ∈ ℝ ) |
35 |
8
|
nnrei |
⊢ ; 6 4 ∈ ℝ |
36 |
35
|
a1i |
⊢ ( 𝜑 → ; 6 4 ∈ ℝ ) |
37 |
3
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
38 |
|
ltle |
⊢ ( ( ; 6 4 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ; 6 4 < 𝑁 → ; 6 4 ≤ 𝑁 ) ) |
39 |
35 37 38
|
sylancr |
⊢ ( 𝜑 → ( ; 6 4 < 𝑁 → ; 6 4 ≤ 𝑁 ) ) |
40 |
4 39
|
mpd |
⊢ ( 𝜑 → ; 6 4 ≤ 𝑁 ) |
41 |
34 36 37 32 40
|
letrd |
⊢ ( 𝜑 → ( e ↑ 2 ) ≤ 𝑁 ) |
42 |
1 2 9 3 32 41
|
bposlem7 |
⊢ ( 𝜑 → ( ; 6 4 < 𝑁 → ( 𝐹 ‘ 𝑁 ) < ( 𝐹 ‘ ; 6 4 ) ) ) |
43 |
4 42
|
mpd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) < ( 𝐹 ‘ ; 6 4 ) ) |
44 |
1 2
|
bposlem8 |
⊢ ( ( 𝐹 ‘ ; 6 4 ) ∈ ℝ ∧ ( 𝐹 ‘ ; 6 4 ) < ( log ‘ 2 ) ) |
45 |
44
|
a1i |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ; 6 4 ) ∈ ℝ ∧ ( 𝐹 ‘ ; 6 4 ) < ( log ‘ 2 ) ) ) |
46 |
45
|
simpld |
⊢ ( 𝜑 → ( 𝐹 ‘ ; 6 4 ) ∈ ℝ ) |
47 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑁 → ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) = ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) |
48 |
47
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) = ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) |
49 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝐺 ‘ ( 𝑛 / 2 ) ) = ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) |
50 |
49
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) = ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) |
51 |
48 50
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) |
52 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 2 · 𝑛 ) = ( 2 · 𝑁 ) ) |
53 |
52
|
fveq2d |
⊢ ( 𝑛 = 𝑁 → ( √ ‘ ( 2 · 𝑛 ) ) = ( √ ‘ ( 2 · 𝑁 ) ) ) |
54 |
53
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) = ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
55 |
51 54
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑛 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑛 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑛 ) ) ) ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
56 |
|
ovex |
⊢ ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ∈ V |
57 |
55 1 56
|
fvmpt |
⊢ ( 𝑁 ∈ ℕ → ( 𝐹 ‘ 𝑁 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
58 |
3 57
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) = ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
59 |
|
sqrt2re |
⊢ ( √ ‘ 2 ) ∈ ℝ |
60 |
3
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
61 |
60
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℝ+ ) |
62 |
|
fveq2 |
⊢ ( 𝑥 = ( √ ‘ 𝑁 ) → ( log ‘ 𝑥 ) = ( log ‘ ( √ ‘ 𝑁 ) ) ) |
63 |
|
id |
⊢ ( 𝑥 = ( √ ‘ 𝑁 ) → 𝑥 = ( √ ‘ 𝑁 ) ) |
64 |
62 63
|
oveq12d |
⊢ ( 𝑥 = ( √ ‘ 𝑁 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) |
65 |
|
ovex |
⊢ ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ∈ V |
66 |
64 2 65
|
fvmpt |
⊢ ( ( √ ‘ 𝑁 ) ∈ ℝ+ → ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) |
67 |
61 66
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) |
68 |
61
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
69 |
68 61
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
70 |
67 69
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) |
71 |
|
remulcl |
⊢ ( ( ( √ ‘ 2 ) ∈ ℝ ∧ ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ∈ ℝ ) → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
72 |
59 70 71
|
sylancr |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℝ ) |
73 |
|
9re |
⊢ 9 ∈ ℝ |
74 |
|
4re |
⊢ 4 ∈ ℝ |
75 |
|
4ne0 |
⊢ 4 ≠ 0 |
76 |
73 74 75
|
redivcli |
⊢ ( 9 / 4 ) ∈ ℝ |
77 |
60
|
rphalfcld |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℝ+ ) |
78 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑁 / 2 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝑁 / 2 ) ) ) |
79 |
|
id |
⊢ ( 𝑥 = ( 𝑁 / 2 ) → 𝑥 = ( 𝑁 / 2 ) ) |
80 |
78 79
|
oveq12d |
⊢ ( 𝑥 = ( 𝑁 / 2 ) → ( ( log ‘ 𝑥 ) / 𝑥 ) = ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) |
81 |
|
ovex |
⊢ ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ∈ V |
82 |
80 2 81
|
fvmpt |
⊢ ( ( 𝑁 / 2 ) ∈ ℝ+ → ( 𝐺 ‘ ( 𝑁 / 2 ) ) = ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) |
83 |
77 82
|
syl |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 / 2 ) ) = ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) |
84 |
77
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
85 |
84 77
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ∈ ℝ ) |
86 |
83 85
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) |
87 |
|
remulcl |
⊢ ( ( ( 9 / 4 ) ∈ ℝ ∧ ( 𝐺 ‘ ( 𝑁 / 2 ) ) ∈ ℝ ) → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ∈ ℝ ) |
88 |
76 86 87
|
sylancr |
⊢ ( 𝜑 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ∈ ℝ ) |
89 |
72 88
|
readdcld |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ∈ ℝ ) |
90 |
|
2rp |
⊢ 2 ∈ ℝ+ |
91 |
|
relogcl |
⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) |
92 |
90 91
|
ax-mp |
⊢ ( log ‘ 2 ) ∈ ℝ |
93 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( 2 · 𝑁 ) ∈ ℝ+ ) |
94 |
90 60 93
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ+ ) |
95 |
94
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ+ ) |
96 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 2 ) ∈ ℝ ∧ ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ+ ) → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ℝ ) |
97 |
92 95 96
|
sylancr |
⊢ ( 𝜑 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ℝ ) |
98 |
89 97
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ∈ ℝ ) |
99 |
58 98
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ ℝ ) |
100 |
92
|
a1i |
⊢ ( 𝜑 → ( log ‘ 2 ) ∈ ℝ ) |
101 |
45
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ ; 6 4 ) < ( log ‘ 2 ) ) |
102 |
|
nnrp |
⊢ ( 4 ∈ ℕ → 4 ∈ ℝ+ ) |
103 |
7 102
|
ax-mp |
⊢ 4 ∈ ℝ+ |
104 |
|
relogcl |
⊢ ( 4 ∈ ℝ+ → ( log ‘ 4 ) ∈ ℝ ) |
105 |
103 104
|
ax-mp |
⊢ ( log ‘ 4 ) ∈ ℝ |
106 |
|
remulcl |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( log ‘ 4 ) ∈ ℝ ) → ( 𝑁 · ( log ‘ 4 ) ) ∈ ℝ ) |
107 |
37 105 106
|
sylancl |
⊢ ( 𝜑 → ( 𝑁 · ( log ‘ 4 ) ) ∈ ℝ ) |
108 |
60
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
109 |
107 108
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ∈ ℝ ) |
110 |
|
rpre |
⊢ ( ( 2 · 𝑁 ) ∈ ℝ+ → ( 2 · 𝑁 ) ∈ ℝ ) |
111 |
|
rpge0 |
⊢ ( ( 2 · 𝑁 ) ∈ ℝ+ → 0 ≤ ( 2 · 𝑁 ) ) |
112 |
110 111
|
resqrtcld |
⊢ ( ( 2 · 𝑁 ) ∈ ℝ+ → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
113 |
94 112
|
syl |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
114 |
|
3nn |
⊢ 3 ∈ ℕ |
115 |
|
nndivre |
⊢ ( ( ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ) |
116 |
113 114 115
|
sylancl |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ) |
117 |
|
2re |
⊢ 2 ∈ ℝ |
118 |
|
readdcl |
⊢ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ∈ ℝ ) |
119 |
116 117 118
|
sylancl |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ∈ ℝ ) |
120 |
94
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 2 · 𝑁 ) ) ∈ ℝ ) |
121 |
119 120
|
remulcld |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ∈ ℝ ) |
122 |
|
remulcl |
⊢ ( ( 4 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 4 · 𝑁 ) ∈ ℝ ) |
123 |
74 37 122
|
sylancr |
⊢ ( 𝜑 → ( 4 · 𝑁 ) ∈ ℝ ) |
124 |
|
nndivre |
⊢ ( ( ( 4 · 𝑁 ) ∈ ℝ ∧ 3 ∈ ℕ ) → ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ) |
125 |
123 114 124
|
sylancl |
⊢ ( 𝜑 → ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ) |
126 |
|
5re |
⊢ 5 ∈ ℝ |
127 |
|
resubcl |
⊢ ( ( ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ∧ 5 ∈ ℝ ) → ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ) |
128 |
125 126 127
|
sylancl |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ) |
129 |
|
remulcl |
⊢ ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℝ ∧ ( log ‘ 2 ) ∈ ℝ ) → ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
130 |
128 92 129
|
sylancl |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
131 |
121 130
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ∈ ℝ ) |
132 |
|
remulcl |
⊢ ( ( ( ( 4 · 𝑁 ) / 3 ) ∈ ℝ ∧ ( log ‘ 2 ) ∈ ℝ ) → ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
133 |
125 92 132
|
sylancl |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ∈ ℝ ) |
134 |
133 108
|
resubcld |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ∈ ℝ ) |
135 |
3
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
136 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
137 |
74
|
a1i |
⊢ ( 𝜑 → 4 ∈ ℝ ) |
138 |
|
6nn |
⊢ 6 ∈ ℕ |
139 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
140 |
|
4lt10 |
⊢ 4 < ; 1 0 |
141 |
138 139 139 140
|
declti |
⊢ 4 < ; 6 4 |
142 |
141
|
a1i |
⊢ ( 𝜑 → 4 < ; 6 4 ) |
143 |
137 36 37 142 4
|
lttrd |
⊢ ( 𝜑 → 4 < 𝑁 ) |
144 |
|
4z |
⊢ 4 ∈ ℤ |
145 |
|
zltp1le |
⊢ ( ( 4 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 4 < 𝑁 ↔ ( 4 + 1 ) ≤ 𝑁 ) ) |
146 |
144 135 145
|
sylancr |
⊢ ( 𝜑 → ( 4 < 𝑁 ↔ ( 4 + 1 ) ≤ 𝑁 ) ) |
147 |
143 146
|
mpbid |
⊢ ( 𝜑 → ( 4 + 1 ) ≤ 𝑁 ) |
148 |
136 147
|
eqbrtrid |
⊢ ( 𝜑 → 5 ≤ 𝑁 ) |
149 |
|
5nn |
⊢ 5 ∈ ℕ |
150 |
149
|
nnzi |
⊢ 5 ∈ ℤ |
151 |
150
|
eluz1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 5 ) ↔ ( 𝑁 ∈ ℤ ∧ 5 ≤ 𝑁 ) ) |
152 |
135 148 151
|
sylanbrc |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 5 ) ) |
153 |
|
breq2 |
⊢ ( 𝑝 = 𝑞 → ( 𝑁 < 𝑝 ↔ 𝑁 < 𝑞 ) ) |
154 |
|
breq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ≤ ( 2 · 𝑁 ) ↔ 𝑞 ≤ ( 2 · 𝑁 ) ) ) |
155 |
153 154
|
anbi12d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ↔ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ ( 2 · 𝑁 ) ) ) ) |
156 |
155
|
cbvrexvw |
⊢ ( ∃ 𝑝 ∈ ℙ ( 𝑁 < 𝑝 ∧ 𝑝 ≤ ( 2 · 𝑁 ) ) ↔ ∃ 𝑞 ∈ ℙ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ ( 2 · 𝑁 ) ) ) |
157 |
5 156
|
sylnib |
⊢ ( 𝜑 → ¬ ∃ 𝑞 ∈ ℙ ( 𝑁 < 𝑞 ∧ 𝑞 ≤ ( 2 · 𝑁 ) ) ) |
158 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt ( ( 2 · 𝑁 ) C 𝑁 ) ) ) , 1 ) ) |
159 |
|
eqid |
⊢ ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) = ( ⌊ ‘ ( ( 2 · 𝑁 ) / 3 ) ) |
160 |
|
eqid |
⊢ ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) = ( ⌊ ‘ ( √ ‘ ( 2 · 𝑁 ) ) ) |
161 |
152 157 158 159 160
|
bposlem6 |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) < ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) ) |
162 |
|
reexplog |
⊢ ( ( 4 ∈ ℝ+ ∧ 𝑁 ∈ ℤ ) → ( 4 ↑ 𝑁 ) = ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) ) |
163 |
103 135 162
|
sylancr |
⊢ ( 𝜑 → ( 4 ↑ 𝑁 ) = ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) ) |
164 |
60
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝑁 ) ) = 𝑁 ) |
165 |
164
|
eqcomd |
⊢ ( 𝜑 → 𝑁 = ( exp ‘ ( log ‘ 𝑁 ) ) ) |
166 |
163 165
|
oveq12d |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) = ( ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) / ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
167 |
107
|
recnd |
⊢ ( 𝜑 → ( 𝑁 · ( log ‘ 4 ) ) ∈ ℂ ) |
168 |
108
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℂ ) |
169 |
|
efsub |
⊢ ( ( ( 𝑁 · ( log ‘ 4 ) ) ∈ ℂ ∧ ( log ‘ 𝑁 ) ∈ ℂ ) → ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) / ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
170 |
167 168 169
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( exp ‘ ( 𝑁 · ( log ‘ 4 ) ) ) / ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
171 |
166 170
|
eqtr4d |
⊢ ( 𝜑 → ( ( 4 ↑ 𝑁 ) / 𝑁 ) = ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) ) |
172 |
94
|
rpcnd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
173 |
94
|
rpne0d |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ≠ 0 ) |
174 |
119
|
recnd |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ∈ ℂ ) |
175 |
172 173 174
|
cxpefd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) = ( exp ‘ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ) ) |
176 |
|
2cn |
⊢ 2 ∈ ℂ |
177 |
|
2ne0 |
⊢ 2 ≠ 0 |
178 |
128
|
recnd |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℂ ) |
179 |
|
cxpef |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ∈ ℂ ) → ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) = ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) |
180 |
176 177 178 179
|
mp3an12i |
⊢ ( 𝜑 → ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) = ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) |
181 |
175 180
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) = ( ( exp ‘ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ) · ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
182 |
121
|
recnd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ∈ ℂ ) |
183 |
130
|
recnd |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ∈ ℂ ) |
184 |
|
efadd |
⊢ ( ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ∈ ℂ ∧ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ∈ ℂ ) → ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) = ( ( exp ‘ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ) · ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
185 |
182 183 184
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) = ( ( exp ‘ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ) · ( exp ‘ ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
186 |
181 185
|
eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑𝑐 ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) ) · ( 2 ↑𝑐 ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) ) ) = ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
187 |
161 171 186
|
3brtr3d |
⊢ ( 𝜑 → ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) |
188 |
|
eflt |
⊢ ( ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ∈ ℝ ∧ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ∈ ℝ ) → ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) < ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ↔ ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) ) |
189 |
109 131 188
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) < ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ↔ ( exp ‘ ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) ) < ( exp ‘ ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) ) ) |
190 |
187 189
|
mpbird |
⊢ ( 𝜑 → ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) < ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) ) |
191 |
109 131 134 190
|
ltsub1dd |
⊢ ( 𝜑 → ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) < ( ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) |
192 |
37
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
193 |
|
mulcom |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 2 · 𝑁 ) = ( 𝑁 · 2 ) ) |
194 |
176 192 193
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = ( 𝑁 · 2 ) ) |
195 |
194
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) = ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) ) |
196 |
92
|
recni |
⊢ ( log ‘ 2 ) ∈ ℂ |
197 |
|
mulass |
⊢ ( ( 𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ ( log ‘ 2 ) ∈ ℂ ) → ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( 2 · ( log ‘ 2 ) ) ) ) |
198 |
176 196 197
|
mp3an23 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( 2 · ( log ‘ 2 ) ) ) ) |
199 |
192 198
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( 2 · ( log ‘ 2 ) ) ) ) |
200 |
196
|
2timesi |
⊢ ( 2 · ( log ‘ 2 ) ) = ( ( log ‘ 2 ) + ( log ‘ 2 ) ) |
201 |
|
relogmul |
⊢ ( ( 2 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( log ‘ ( 2 · 2 ) ) = ( ( log ‘ 2 ) + ( log ‘ 2 ) ) ) |
202 |
90 90 201
|
mp2an |
⊢ ( log ‘ ( 2 · 2 ) ) = ( ( log ‘ 2 ) + ( log ‘ 2 ) ) |
203 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
204 |
203
|
fveq2i |
⊢ ( log ‘ ( 2 · 2 ) ) = ( log ‘ 4 ) |
205 |
200 202 204
|
3eqtr2i |
⊢ ( 2 · ( log ‘ 2 ) ) = ( log ‘ 4 ) |
206 |
205
|
oveq2i |
⊢ ( 𝑁 · ( 2 · ( log ‘ 2 ) ) ) = ( 𝑁 · ( log ‘ 4 ) ) |
207 |
199 206
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑁 · 2 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( log ‘ 4 ) ) ) |
208 |
195 207
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) = ( 𝑁 · ( log ‘ 4 ) ) ) |
209 |
208
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) = ( ( 𝑁 · ( log ‘ 4 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) ) |
210 |
125
|
recnd |
⊢ ( 𝜑 → ( ( 4 · 𝑁 ) / 3 ) ∈ ℂ ) |
211 |
|
3rp |
⊢ 3 ∈ ℝ+ |
212 |
|
rpdivcl |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ+ ) |
213 |
94 211 212
|
sylancl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) ∈ ℝ+ ) |
214 |
213
|
rpcnd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) ∈ ℂ ) |
215 |
|
4p2e6 |
⊢ ( 4 + 2 ) = 6 |
216 |
215
|
oveq1i |
⊢ ( ( 4 + 2 ) · 𝑁 ) = ( 6 · 𝑁 ) |
217 |
|
4cn |
⊢ 4 ∈ ℂ |
218 |
|
adddir |
⊢ ( ( 4 ∈ ℂ ∧ 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 4 + 2 ) · 𝑁 ) = ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) ) |
219 |
217 176 192 218
|
mp3an12i |
⊢ ( 𝜑 → ( ( 4 + 2 ) · 𝑁 ) = ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) ) |
220 |
216 219
|
eqtr3id |
⊢ ( 𝜑 → ( 6 · 𝑁 ) = ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) ) |
221 |
220
|
oveq1d |
⊢ ( 𝜑 → ( ( 6 · 𝑁 ) / 3 ) = ( ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) / 3 ) ) |
222 |
|
6cn |
⊢ 6 ∈ ℂ |
223 |
|
3cn |
⊢ 3 ∈ ℂ |
224 |
|
3ne0 |
⊢ 3 ≠ 0 |
225 |
223 224
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
226 |
|
div23 |
⊢ ( ( 6 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 6 · 𝑁 ) / 3 ) = ( ( 6 / 3 ) · 𝑁 ) ) |
227 |
222 225 226
|
mp3an13 |
⊢ ( 𝑁 ∈ ℂ → ( ( 6 · 𝑁 ) / 3 ) = ( ( 6 / 3 ) · 𝑁 ) ) |
228 |
192 227
|
syl |
⊢ ( 𝜑 → ( ( 6 · 𝑁 ) / 3 ) = ( ( 6 / 3 ) · 𝑁 ) ) |
229 |
|
3t2e6 |
⊢ ( 3 · 2 ) = 6 |
230 |
229
|
oveq1i |
⊢ ( ( 3 · 2 ) / 3 ) = ( 6 / 3 ) |
231 |
176 223 224
|
divcan3i |
⊢ ( ( 3 · 2 ) / 3 ) = 2 |
232 |
230 231
|
eqtr3i |
⊢ ( 6 / 3 ) = 2 |
233 |
232
|
oveq1i |
⊢ ( ( 6 / 3 ) · 𝑁 ) = ( 2 · 𝑁 ) |
234 |
228 233
|
eqtrdi |
⊢ ( 𝜑 → ( ( 6 · 𝑁 ) / 3 ) = ( 2 · 𝑁 ) ) |
235 |
123
|
recnd |
⊢ ( 𝜑 → ( 4 · 𝑁 ) ∈ ℂ ) |
236 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 2 · 𝑁 ) ∈ ℝ ) |
237 |
117 37 236
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
238 |
237
|
recnd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℂ ) |
239 |
|
divdir |
⊢ ( ( ( 4 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) / 3 ) = ( ( ( 4 · 𝑁 ) / 3 ) + ( ( 2 · 𝑁 ) / 3 ) ) ) |
240 |
225 239
|
mp3an3 |
⊢ ( ( ( 4 · 𝑁 ) ∈ ℂ ∧ ( 2 · 𝑁 ) ∈ ℂ ) → ( ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) / 3 ) = ( ( ( 4 · 𝑁 ) / 3 ) + ( ( 2 · 𝑁 ) / 3 ) ) ) |
241 |
235 238 240
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) + ( 2 · 𝑁 ) ) / 3 ) = ( ( ( 4 · 𝑁 ) / 3 ) + ( ( 2 · 𝑁 ) / 3 ) ) ) |
242 |
221 234 241
|
3eqtr3d |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = ( ( ( 4 · 𝑁 ) / 3 ) + ( ( 2 · 𝑁 ) / 3 ) ) ) |
243 |
210 214 242
|
mvrladdd |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) − ( ( 4 · 𝑁 ) / 3 ) ) = ( ( 2 · 𝑁 ) / 3 ) ) |
244 |
243
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) − ( ( 4 · 𝑁 ) / 3 ) ) · ( log ‘ 2 ) ) = ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) |
245 |
100
|
recnd |
⊢ ( 𝜑 → ( log ‘ 2 ) ∈ ℂ ) |
246 |
238 210 245
|
subdird |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) − ( ( 4 · 𝑁 ) / 3 ) ) · ( log ‘ 2 ) ) = ( ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) ) |
247 |
244 246
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) = ( ( ( 2 · 𝑁 ) · ( log ‘ 2 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) ) |
248 |
133
|
recnd |
⊢ ( 𝜑 → ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ∈ ℂ ) |
249 |
167 248 168
|
nnncan2d |
⊢ ( 𝜑 → ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( 𝑁 · ( log ‘ 4 ) ) − ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) ) ) |
250 |
209 247 249
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) = ( ( ( 𝑁 · ( log ‘ 4 ) ) − ( log ‘ 𝑁 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) |
251 |
116
|
recnd |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℂ ) |
252 |
176
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
253 |
120
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( 2 · 𝑁 ) ) ∈ ℂ ) |
254 |
251 252 253
|
adddird |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( 2 · ( log ‘ ( 2 · 𝑁 ) ) ) ) ) |
255 |
|
relogmul |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( log ‘ ( 2 · 𝑁 ) ) = ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) |
256 |
90 60 255
|
sylancr |
⊢ ( 𝜑 → ( log ‘ ( 2 · 𝑁 ) ) = ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) |
257 |
256
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( 2 · 𝑁 ) ) ) = ( 2 · ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) ) |
258 |
252 245 168
|
adddid |
⊢ ( 𝜑 → ( 2 · ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) = ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) |
259 |
257 258
|
eqtrd |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) |
260 |
259
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( 2 · ( log ‘ ( 2 · 𝑁 ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) ) |
261 |
254 260
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) ) |
262 |
|
5cn |
⊢ 5 ∈ ℂ |
263 |
262
|
a1i |
⊢ ( 𝜑 → 5 ∈ ℂ ) |
264 |
210 263 245
|
subdird |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) = ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) |
265 |
264
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( 5 · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) |
266 |
262 196
|
mulcli |
⊢ ( 5 · ( log ‘ 2 ) ) ∈ ℂ |
267 |
266
|
a1i |
⊢ ( 𝜑 → ( 5 · ( log ‘ 2 ) ) ∈ ℂ ) |
268 |
248 267 168
|
nnncan1d |
⊢ ( 𝜑 → ( ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( 5 · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) |
269 |
265 268
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) |
270 |
261 269
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
271 |
134
|
recnd |
⊢ ( 𝜑 → ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ∈ ℂ ) |
272 |
182 183 271
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) ) |
273 |
262 223 196
|
subdiri |
⊢ ( ( 5 − 3 ) · ( log ‘ 2 ) ) = ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) |
274 |
|
3p2e5 |
⊢ ( 3 + 2 ) = 5 |
275 |
274
|
oveq1i |
⊢ ( ( 3 + 2 ) − 3 ) = ( 5 − 3 ) |
276 |
|
pncan2 |
⊢ ( ( 3 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 3 + 2 ) − 3 ) = 2 ) |
277 |
223 176 276
|
mp2an |
⊢ ( ( 3 + 2 ) − 3 ) = 2 |
278 |
275 277
|
eqtr3i |
⊢ ( 5 − 3 ) = 2 |
279 |
278
|
oveq1i |
⊢ ( ( 5 − 3 ) · ( log ‘ 2 ) ) = ( 2 · ( log ‘ 2 ) ) |
280 |
273 279
|
eqtr3i |
⊢ ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) = ( 2 · ( log ‘ 2 ) ) |
281 |
280
|
a1i |
⊢ ( 𝜑 → ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) = ( 2 · ( log ‘ 2 ) ) ) |
282 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( log ‘ 𝑁 ) ∈ ℂ ) → ( 2 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
283 |
176 168 282
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
284 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
285 |
284
|
oveq1i |
⊢ ( 3 · ( log ‘ 𝑁 ) ) = ( ( 2 + 1 ) · ( log ‘ 𝑁 ) ) |
286 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
287 |
252 286 168
|
adddird |
⊢ ( 𝜑 → ( ( 2 + 1 ) · ( log ‘ 𝑁 ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( 1 · ( log ‘ 𝑁 ) ) ) ) |
288 |
285 287
|
syl5eq |
⊢ ( 𝜑 → ( 3 · ( log ‘ 𝑁 ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( 1 · ( log ‘ 𝑁 ) ) ) ) |
289 |
168
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( log ‘ 𝑁 ) ) = ( log ‘ 𝑁 ) ) |
290 |
289
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑁 ) ) + ( 1 · ( log ‘ 𝑁 ) ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( log ‘ 𝑁 ) ) ) |
291 |
288 290
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( log ‘ 𝑁 ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( log ‘ 𝑁 ) ) ) |
292 |
291
|
oveq1d |
⊢ ( 𝜑 → ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) = ( ( ( 2 · ( log ‘ 𝑁 ) ) + ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) |
293 |
283 168 267 292
|
assraddsubd |
⊢ ( 𝜑 → ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) = ( ( 2 · ( log ‘ 𝑁 ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
294 |
281 293
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) + ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) = ( ( 2 · ( log ‘ 2 ) ) + ( ( 2 · ( log ‘ 𝑁 ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) ) |
295 |
|
relogdiv |
⊢ ( ( 𝑁 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( log ‘ ( 𝑁 / 2 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) |
296 |
60 90 295
|
sylancl |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 / 2 ) ) = ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) |
297 |
296
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) = ( 3 · ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) ) |
298 |
|
subdi |
⊢ ( ( 3 ∈ ℂ ∧ ( log ‘ 𝑁 ) ∈ ℂ ∧ ( log ‘ 2 ) ∈ ℂ ) → ( 3 · ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
299 |
223 196 298
|
mp3an13 |
⊢ ( ( log ‘ 𝑁 ) ∈ ℂ → ( 3 · ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
300 |
168 299
|
syl |
⊢ ( 𝜑 → ( 3 · ( ( log ‘ 𝑁 ) − ( log ‘ 2 ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
301 |
297 300
|
eqtrd |
⊢ ( 𝜑 → ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
302 |
|
div23 |
⊢ ( ( 2 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 2 · 𝑁 ) / 3 ) = ( ( 2 / 3 ) · 𝑁 ) ) |
303 |
176 225 302
|
mp3an13 |
⊢ ( 𝑁 ∈ ℂ → ( ( 2 · 𝑁 ) / 3 ) = ( ( 2 / 3 ) · 𝑁 ) ) |
304 |
192 303
|
syl |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) = ( ( 2 / 3 ) · 𝑁 ) ) |
305 |
223 176 223 176 177 177
|
divmuldivi |
⊢ ( ( 3 / 2 ) · ( 3 / 2 ) ) = ( ( 3 · 3 ) / ( 2 · 2 ) ) |
306 |
|
3t3e9 |
⊢ ( 3 · 3 ) = 9 |
307 |
306 203
|
oveq12i |
⊢ ( ( 3 · 3 ) / ( 2 · 2 ) ) = ( 9 / 4 ) |
308 |
305 307
|
eqtr2i |
⊢ ( 9 / 4 ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) |
309 |
308
|
a1i |
⊢ ( 𝜑 → ( 9 / 4 ) = ( ( 3 / 2 ) · ( 3 / 2 ) ) ) |
310 |
304 309
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 9 / 4 ) ) = ( ( ( 2 / 3 ) · 𝑁 ) · ( ( 3 / 2 ) · ( 3 / 2 ) ) ) ) |
311 |
176 223 224
|
divcli |
⊢ ( 2 / 3 ) ∈ ℂ |
312 |
223 176 177
|
divcli |
⊢ ( 3 / 2 ) ∈ ℂ |
313 |
|
mul4 |
⊢ ( ( ( ( 2 / 3 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ∧ ( ( 3 / 2 ) ∈ ℂ ∧ ( 3 / 2 ) ∈ ℂ ) ) → ( ( ( 2 / 3 ) · 𝑁 ) · ( ( 3 / 2 ) · ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) ) |
314 |
312 312 313
|
mpanr12 |
⊢ ( ( ( 2 / 3 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( 2 / 3 ) · 𝑁 ) · ( ( 3 / 2 ) · ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) ) |
315 |
311 192 314
|
sylancr |
⊢ ( 𝜑 → ( ( ( 2 / 3 ) · 𝑁 ) · ( ( 3 / 2 ) · ( 3 / 2 ) ) ) = ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) ) |
316 |
|
divcan6 |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 2 / 3 ) · ( 3 / 2 ) ) = 1 ) |
317 |
176 177 223 224 316
|
mp4an |
⊢ ( ( 2 / 3 ) · ( 3 / 2 ) ) = 1 |
318 |
317
|
oveq1i |
⊢ ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) = ( 1 · ( 𝑁 · ( 3 / 2 ) ) ) |
319 |
|
mulcl |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 3 / 2 ) ∈ ℂ ) → ( 𝑁 · ( 3 / 2 ) ) ∈ ℂ ) |
320 |
192 312 319
|
sylancl |
⊢ ( 𝜑 → ( 𝑁 · ( 3 / 2 ) ) ∈ ℂ ) |
321 |
320
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( 𝑁 · ( 3 / 2 ) ) ) = ( 𝑁 · ( 3 / 2 ) ) ) |
322 |
318 321
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) = ( 𝑁 · ( 3 / 2 ) ) ) |
323 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
324 |
|
div12 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 3 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( 𝑁 · ( 3 / 2 ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
325 |
223 323 324
|
mp3an23 |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 · ( 3 / 2 ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
326 |
192 325
|
syl |
⊢ ( 𝜑 → ( 𝑁 · ( 3 / 2 ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
327 |
322 326
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 / 3 ) · ( 3 / 2 ) ) · ( 𝑁 · ( 3 / 2 ) ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
328 |
310 315 327
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 9 / 4 ) ) = ( 3 · ( 𝑁 / 2 ) ) ) |
329 |
328 83
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) / 3 ) · ( 9 / 4 ) ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) = ( ( 3 · ( 𝑁 / 2 ) ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) ) |
330 |
76
|
recni |
⊢ ( 9 / 4 ) ∈ ℂ |
331 |
330
|
a1i |
⊢ ( 𝜑 → ( 9 / 4 ) ∈ ℂ ) |
332 |
86
|
recnd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑁 / 2 ) ) ∈ ℂ ) |
333 |
214 331 332
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) / 3 ) · ( 9 / 4 ) ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) = ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) |
334 |
223
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
335 |
77
|
rpcnd |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ∈ ℂ ) |
336 |
84
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 / 2 ) ) ∈ ℂ ) |
337 |
77
|
rpne0d |
⊢ ( 𝜑 → ( 𝑁 / 2 ) ≠ 0 ) |
338 |
336 335 337
|
divcld |
⊢ ( 𝜑 → ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ∈ ℂ ) |
339 |
334 335 338
|
mulassd |
⊢ ( 𝜑 → ( ( 3 · ( 𝑁 / 2 ) ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) = ( 3 · ( ( 𝑁 / 2 ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) ) ) |
340 |
336 335 337
|
divcan2d |
⊢ ( 𝜑 → ( ( 𝑁 / 2 ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) = ( log ‘ ( 𝑁 / 2 ) ) ) |
341 |
340
|
oveq2d |
⊢ ( 𝜑 → ( 3 · ( ( 𝑁 / 2 ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) ) = ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) ) |
342 |
339 341
|
eqtrd |
⊢ ( 𝜑 → ( ( 3 · ( 𝑁 / 2 ) ) · ( ( log ‘ ( 𝑁 / 2 ) ) / ( 𝑁 / 2 ) ) ) = ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) ) |
343 |
329 333 342
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) = ( 3 · ( log ‘ ( 𝑁 / 2 ) ) ) ) |
344 |
223 196
|
mulcli |
⊢ ( 3 · ( log ‘ 2 ) ) ∈ ℂ |
345 |
344
|
a1i |
⊢ ( 𝜑 → ( 3 · ( log ‘ 2 ) ) ∈ ℂ ) |
346 |
|
mulcl |
⊢ ( ( 3 ∈ ℂ ∧ ( log ‘ 𝑁 ) ∈ ℂ ) → ( 3 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
347 |
223 168 346
|
sylancr |
⊢ ( 𝜑 → ( 3 · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
348 |
267 345 347
|
npncan3d |
⊢ ( 𝜑 → ( ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) + ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) = ( ( 3 · ( log ‘ 𝑁 ) ) − ( 3 · ( log ‘ 2 ) ) ) ) |
349 |
301 343 348
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) = ( ( ( 5 · ( log ‘ 2 ) ) − ( 3 · ( log ‘ 2 ) ) ) + ( ( 3 · ( log ‘ 𝑁 ) ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
350 |
117 92
|
remulcli |
⊢ ( 2 · ( log ‘ 2 ) ) ∈ ℝ |
351 |
350
|
recni |
⊢ ( 2 · ( log ‘ 2 ) ) ∈ ℂ |
352 |
351
|
a1i |
⊢ ( 𝜑 → ( 2 · ( log ‘ 2 ) ) ∈ ℂ ) |
353 |
|
subcl |
⊢ ( ( ( log ‘ 𝑁 ) ∈ ℂ ∧ ( 5 · ( log ‘ 2 ) ) ∈ ℂ ) → ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ∈ ℂ ) |
354 |
168 266 353
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ∈ ℂ ) |
355 |
352 283 354
|
addassd |
⊢ ( 𝜑 → ( ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) = ( ( 2 · ( log ‘ 2 ) ) + ( ( 2 · ( log ‘ 𝑁 ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) ) |
356 |
294 349 355
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) = ( ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
357 |
356
|
oveq2d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) ) |
358 |
|
mulcl |
⊢ ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) ∈ ℂ ∧ ( log ‘ 2 ) ∈ ℂ ) → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ∈ ℂ ) |
359 |
251 196 358
|
sylancl |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ∈ ℂ ) |
360 |
251 168
|
mulcld |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ∈ ℂ ) |
361 |
88
|
recnd |
⊢ ( 𝜑 → ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ∈ ℂ ) |
362 |
214 361
|
mulcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ∈ ℂ ) |
363 |
359 360 362
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) ) |
364 |
256
|
oveq2d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) ) |
365 |
251 245 168
|
adddid |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( log ‘ 2 ) + ( log ‘ 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) ) |
366 |
364 365
|
eqtrd |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) ) |
367 |
366
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
368 |
58
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
369 |
89
|
recnd |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ∈ ℂ ) |
370 |
97
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ∈ ℂ ) |
371 |
214 369 370
|
adddid |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) + ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) = ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
372 |
368 371
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
373 |
72
|
recnd |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ∈ ℂ ) |
374 |
214 373 361
|
adddid |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
375 |
94
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( 2 · 𝑁 ) ) |
376 |
|
remsqsqrt |
⊢ ( ( ( 2 · 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 2 · 𝑁 ) ) → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) = ( 2 · 𝑁 ) ) |
377 |
237 375 376
|
syl2anc |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) = ( 2 · 𝑁 ) ) |
378 |
377
|
oveq1d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) / 3 ) = ( ( 2 · 𝑁 ) / 3 ) ) |
379 |
113
|
recnd |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ∈ ℂ ) |
380 |
224
|
a1i |
⊢ ( 𝜑 → 3 ≠ 0 ) |
381 |
379 379 334 380
|
div23d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) · ( √ ‘ ( 2 · 𝑁 ) ) ) / 3 ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
382 |
378 381
|
eqtr3d |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) / 3 ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) ) |
383 |
382
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
384 |
251 379 373
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) ) |
385 |
|
0le2 |
⊢ 0 ≤ 2 |
386 |
117 385
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) |
387 |
60
|
rprege0d |
⊢ ( 𝜑 → ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) ) |
388 |
|
sqrtmul |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) ) → ( √ ‘ ( 2 · 𝑁 ) ) = ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) ) |
389 |
386 387 388
|
sylancr |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) = ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) ) |
390 |
389
|
oveq1d |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
391 |
59
|
recni |
⊢ ( √ ‘ 2 ) ∈ ℂ |
392 |
391
|
a1i |
⊢ ( 𝜑 → ( √ ‘ 2 ) ∈ ℂ ) |
393 |
61
|
rpcnd |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ∈ ℂ ) |
394 |
70
|
recnd |
⊢ ( 𝜑 → ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ∈ ℂ ) |
395 |
392 393 392 394
|
mul4d |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( √ ‘ 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) · ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) |
396 |
|
remsqsqrt |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 ) |
397 |
117 385 396
|
mp2an |
⊢ ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 |
398 |
397
|
a1i |
⊢ ( 𝜑 → ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) = 2 ) |
399 |
67
|
oveq2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) = ( ( √ ‘ 𝑁 ) · ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) ) |
400 |
68
|
recnd |
⊢ ( 𝜑 → ( log ‘ ( √ ‘ 𝑁 ) ) ∈ ℂ ) |
401 |
61
|
rpne0d |
⊢ ( 𝜑 → ( √ ‘ 𝑁 ) ≠ 0 ) |
402 |
400 393 401
|
divcan2d |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) · ( ( log ‘ ( √ ‘ 𝑁 ) ) / ( √ ‘ 𝑁 ) ) ) = ( log ‘ ( √ ‘ 𝑁 ) ) ) |
403 |
399 402
|
eqtrd |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) = ( log ‘ ( √ ‘ 𝑁 ) ) ) |
404 |
398 403
|
oveq12d |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) · ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( 2 · ( log ‘ ( √ ‘ 𝑁 ) ) ) ) |
405 |
400
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( log ‘ ( √ ‘ 𝑁 ) ) ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) + ( log ‘ ( √ ‘ 𝑁 ) ) ) ) |
406 |
61 61
|
relogmuld |
⊢ ( 𝜑 → ( log ‘ ( ( √ ‘ 𝑁 ) · ( √ ‘ 𝑁 ) ) ) = ( ( log ‘ ( √ ‘ 𝑁 ) ) + ( log ‘ ( √ ‘ 𝑁 ) ) ) ) |
407 |
|
remsqsqrt |
⊢ ( ( 𝑁 ∈ ℝ ∧ 0 ≤ 𝑁 ) → ( ( √ ‘ 𝑁 ) · ( √ ‘ 𝑁 ) ) = 𝑁 ) |
408 |
387 407
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝑁 ) · ( √ ‘ 𝑁 ) ) = 𝑁 ) |
409 |
408
|
fveq2d |
⊢ ( 𝜑 → ( log ‘ ( ( √ ‘ 𝑁 ) · ( √ ‘ 𝑁 ) ) ) = ( log ‘ 𝑁 ) ) |
410 |
406 409
|
eqtr3d |
⊢ ( 𝜑 → ( ( log ‘ ( √ ‘ 𝑁 ) ) + ( log ‘ ( √ ‘ 𝑁 ) ) ) = ( log ‘ 𝑁 ) ) |
411 |
404 405 410
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( √ ‘ 2 ) · ( √ ‘ 2 ) ) · ( ( √ ‘ 𝑁 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( log ‘ 𝑁 ) ) |
412 |
390 395 411
|
3eqtrd |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( log ‘ 𝑁 ) ) |
413 |
412
|
oveq2d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) |
414 |
383 384 413
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) ) |
415 |
414
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
416 |
374 415
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
417 |
382
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) |
418 |
251 379 370
|
mulassd |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( √ ‘ ( 2 · 𝑁 ) ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) ) |
419 |
95
|
rpne0d |
⊢ ( 𝜑 → ( √ ‘ ( 2 · 𝑁 ) ) ≠ 0 ) |
420 |
245 379 419
|
divcan2d |
⊢ ( 𝜑 → ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) = ( log ‘ 2 ) ) |
421 |
420
|
oveq2d |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( ( √ ‘ ( 2 · 𝑁 ) ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ) |
422 |
417 418 421
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) = ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ) |
423 |
416 422
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 2 · 𝑁 ) / 3 ) · ( ( ( √ ‘ 2 ) · ( 𝐺 ‘ ( √ ‘ 𝑁 ) ) ) + ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( log ‘ 2 ) / ( √ ‘ ( 2 · 𝑁 ) ) ) ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ) ) |
424 |
360 362
|
addcld |
⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ∈ ℂ ) |
425 |
424 359
|
addcomd |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) + ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) ) |
426 |
372 423 425
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 2 ) ) + ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ 𝑁 ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) ) |
427 |
363 367 426
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · 𝑁 ) / 3 ) · ( ( 9 / 4 ) · ( 𝐺 ‘ ( 𝑁 / 2 ) ) ) ) ) ) |
428 |
251 253
|
mulcld |
⊢ ( 𝜑 → ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) ∈ ℂ ) |
429 |
|
addcl |
⊢ ( ( ( 2 · ( log ‘ 2 ) ) ∈ ℂ ∧ ( 2 · ( log ‘ 𝑁 ) ) ∈ ℂ ) → ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ∈ ℂ ) |
430 |
351 283 429
|
sylancr |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ∈ ℂ ) |
431 |
428 430 354
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) = ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) ) |
432 |
357 427 431
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( 2 · ( log ‘ 2 ) ) + ( 2 · ( log ‘ 𝑁 ) ) ) ) + ( ( log ‘ 𝑁 ) − ( 5 · ( log ‘ 2 ) ) ) ) ) |
433 |
270 272 432
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) = ( ( ( ( ( ( √ ‘ ( 2 · 𝑁 ) ) / 3 ) + 2 ) · ( log ‘ ( 2 · 𝑁 ) ) ) + ( ( ( ( 4 · 𝑁 ) / 3 ) − 5 ) · ( log ‘ 2 ) ) ) − ( ( ( ( 4 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) − ( log ‘ 𝑁 ) ) ) ) |
434 |
191 250 433
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) < ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) ) |
435 |
100 99 213
|
ltmul2d |
⊢ ( 𝜑 → ( ( log ‘ 2 ) < ( 𝐹 ‘ 𝑁 ) ↔ ( ( ( 2 · 𝑁 ) / 3 ) · ( log ‘ 2 ) ) < ( ( ( 2 · 𝑁 ) / 3 ) · ( 𝐹 ‘ 𝑁 ) ) ) ) |
436 |
434 435
|
mpbird |
⊢ ( 𝜑 → ( log ‘ 2 ) < ( 𝐹 ‘ 𝑁 ) ) |
437 |
46 100 99 101 436
|
lttrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ; 6 4 ) < ( 𝐹 ‘ 𝑁 ) ) |
438 |
46 99 437
|
ltnsymd |
⊢ ( 𝜑 → ¬ ( 𝐹 ‘ 𝑁 ) < ( 𝐹 ‘ ; 6 4 ) ) |
439 |
43 438
|
pm2.21dd |
⊢ ( 𝜑 → 𝜓 ) |