Metamath Proof Explorer


Theorem br1cnvinxp

Description: Binary relation on the converse of an intersection with a Cartesian product. (Contributed by Peter Mazsa, 27-Jul-2019)

Ref Expression
Assertion br1cnvinxp ( 𝐶 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐷 ↔ ( ( 𝐶𝐵𝐷𝐴 ) ∧ 𝐷 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 relinxp Rel ( 𝑅 ∩ ( 𝐴 × 𝐵 ) )
2 1 relbrcnv ( 𝐶 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐷𝐷 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐶 )
3 brinxp2 ( 𝐷 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐶 ↔ ( ( 𝐷𝐴𝐶𝐵 ) ∧ 𝐷 𝑅 𝐶 ) )
4 ancom ( ( 𝐷𝐴𝐶𝐵 ) ↔ ( 𝐶𝐵𝐷𝐴 ) )
5 4 anbi1i ( ( ( 𝐷𝐴𝐶𝐵 ) ∧ 𝐷 𝑅 𝐶 ) ↔ ( ( 𝐶𝐵𝐷𝐴 ) ∧ 𝐷 𝑅 𝐶 ) )
6 2 3 5 3bitri ( 𝐶 ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) 𝐷 ↔ ( ( 𝐶𝐵𝐷𝐴 ) ∧ 𝐷 𝑅 𝐶 ) )