| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							br1cossxrnres | 
							⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐷  ∈  𝑋  ∧  𝐸  ∈  𝑌 ) )  →  ( 〈 𝐵 ,  𝐶 〉  ≀  ( 𝑅  ⋉  ( ◡  S   ↾  𝐴 ) ) 〈 𝐷 ,  𝐸 〉  ↔  ∃ 𝑢  ∈  𝐴 ( ( 𝑢 ◡  S  𝐶  ∧  𝑢 𝑅 𝐵 )  ∧  ( 𝑢 ◡  S  𝐸  ∧  𝑢 𝑅 𝐷 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							brcnvssr | 
							⊢ ( 𝑢  ∈  V  →  ( 𝑢 ◡  S  𝐶  ↔  𝐶  ⊆  𝑢 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							elv | 
							⊢ ( 𝑢 ◡  S  𝐶  ↔  𝐶  ⊆  𝑢 )  | 
						
						
							| 4 | 
							
								3
							 | 
							anbi1i | 
							⊢ ( ( 𝑢 ◡  S  𝐶  ∧  𝑢 𝑅 𝐵 )  ↔  ( 𝐶  ⊆  𝑢  ∧  𝑢 𝑅 𝐵 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							brcnvssr | 
							⊢ ( 𝑢  ∈  V  →  ( 𝑢 ◡  S  𝐸  ↔  𝐸  ⊆  𝑢 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							elv | 
							⊢ ( 𝑢 ◡  S  𝐸  ↔  𝐸  ⊆  𝑢 )  | 
						
						
							| 7 | 
							
								6
							 | 
							anbi1i | 
							⊢ ( ( 𝑢 ◡  S  𝐸  ∧  𝑢 𝑅 𝐷 )  ↔  ( 𝐸  ⊆  𝑢  ∧  𝑢 𝑅 𝐷 ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							anbi12i | 
							⊢ ( ( ( 𝑢 ◡  S  𝐶  ∧  𝑢 𝑅 𝐵 )  ∧  ( 𝑢 ◡  S  𝐸  ∧  𝑢 𝑅 𝐷 ) )  ↔  ( ( 𝐶  ⊆  𝑢  ∧  𝑢 𝑅 𝐵 )  ∧  ( 𝐸  ⊆  𝑢  ∧  𝑢 𝑅 𝐷 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rexbii | 
							⊢ ( ∃ 𝑢  ∈  𝐴 ( ( 𝑢 ◡  S  𝐶  ∧  𝑢 𝑅 𝐵 )  ∧  ( 𝑢 ◡  S  𝐸  ∧  𝑢 𝑅 𝐷 ) )  ↔  ∃ 𝑢  ∈  𝐴 ( ( 𝐶  ⊆  𝑢  ∧  𝑢 𝑅 𝐵 )  ∧  ( 𝐸  ⊆  𝑢  ∧  𝑢 𝑅 𝐷 ) ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							bitrdi | 
							⊢ ( ( ( 𝐵  ∈  𝑉  ∧  𝐶  ∈  𝑊 )  ∧  ( 𝐷  ∈  𝑋  ∧  𝐸  ∈  𝑌 ) )  →  ( 〈 𝐵 ,  𝐶 〉  ≀  ( 𝑅  ⋉  ( ◡  S   ↾  𝐴 ) ) 〈 𝐷 ,  𝐸 〉  ↔  ∃ 𝑢  ∈  𝐴 ( ( 𝐶  ⊆  𝑢  ∧  𝑢 𝑅 𝐵 )  ∧  ( 𝐸  ⊆  𝑢  ∧  𝑢 𝑅 𝐷 ) ) ) )  |