| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-hilex | ⊢  ℋ  ∈  V | 
						
							| 2 | 1 | mptex | ⊢ ( 𝑦  ∈   ℋ  ↦  ( 𝑦  ·ih  𝑥 ) )  ∈  V | 
						
							| 3 |  | df-bra | ⊢ bra  =  ( 𝑥  ∈   ℋ  ↦  ( 𝑦  ∈   ℋ  ↦  ( 𝑦  ·ih  𝑥 ) ) ) | 
						
							| 4 | 2 3 | fnmpti | ⊢ bra  Fn   ℋ | 
						
							| 5 |  | rnbra | ⊢ ran  bra  =  ( LinFn  ∩  ContFn ) | 
						
							| 6 |  | fveq1 | ⊢ ( ( bra ‘ 𝑥 )  =  ( bra ‘ 𝑦 )  →  ( ( bra ‘ 𝑥 ) ‘ 𝑧 )  =  ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) ) | 
						
							| 7 |  | braval | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( bra ‘ 𝑥 ) ‘ 𝑧 )  =  ( 𝑧  ·ih  𝑥 ) ) | 
						
							| 8 | 7 | adantlr | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( bra ‘ 𝑥 ) ‘ 𝑧 )  =  ( 𝑧  ·ih  𝑥 ) ) | 
						
							| 9 |  | braval | ⊢ ( ( 𝑦  ∈   ℋ  ∧  𝑧  ∈   ℋ )  →  ( ( bra ‘ 𝑦 ) ‘ 𝑧 )  =  ( 𝑧  ·ih  𝑦 ) ) | 
						
							| 10 | 9 | adantll | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( bra ‘ 𝑦 ) ‘ 𝑧 )  =  ( 𝑧  ·ih  𝑦 ) ) | 
						
							| 11 | 8 10 | eqeq12d | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( ( bra ‘ 𝑥 ) ‘ 𝑧 )  =  ( ( bra ‘ 𝑦 ) ‘ 𝑧 )  ↔  ( 𝑧  ·ih  𝑥 )  =  ( 𝑧  ·ih  𝑦 ) ) ) | 
						
							| 12 | 6 11 | imbitrid | ⊢ ( ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  ∧  𝑧  ∈   ℋ )  →  ( ( bra ‘ 𝑥 )  =  ( bra ‘ 𝑦 )  →  ( 𝑧  ·ih  𝑥 )  =  ( 𝑧  ·ih  𝑦 ) ) ) | 
						
							| 13 | 12 | ralrimdva | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( bra ‘ 𝑥 )  =  ( bra ‘ 𝑦 )  →  ∀ 𝑧  ∈   ℋ ( 𝑧  ·ih  𝑥 )  =  ( 𝑧  ·ih  𝑦 ) ) ) | 
						
							| 14 |  | hial2eq2 | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ∀ 𝑧  ∈   ℋ ( 𝑧  ·ih  𝑥 )  =  ( 𝑧  ·ih  𝑦 )  ↔  𝑥  =  𝑦 ) ) | 
						
							| 15 | 13 14 | sylibd | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( ( bra ‘ 𝑥 )  =  ( bra ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) | 
						
							| 16 | 15 | rgen2 | ⊢ ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( bra ‘ 𝑥 )  =  ( bra ‘ 𝑦 )  →  𝑥  =  𝑦 ) | 
						
							| 17 |  | dff1o6 | ⊢ ( bra :  ℋ –1-1-onto→ ( LinFn  ∩  ContFn )  ↔  ( bra  Fn   ℋ  ∧  ran  bra  =  ( LinFn  ∩  ContFn )  ∧  ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( ( bra ‘ 𝑥 )  =  ( bra ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 18 | 4 5 16 17 | mpbir3an | ⊢ bra :  ℋ –1-1-onto→ ( LinFn  ∩  ContFn ) |