Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hilex |
⊢ ℋ ∈ V |
2 |
1
|
mptex |
⊢ ( 𝑦 ∈ ℋ ↦ ( 𝑦 ·ih 𝑥 ) ) ∈ V |
3 |
|
df-bra |
⊢ bra = ( 𝑥 ∈ ℋ ↦ ( 𝑦 ∈ ℋ ↦ ( 𝑦 ·ih 𝑥 ) ) ) |
4 |
2 3
|
fnmpti |
⊢ bra Fn ℋ |
5 |
|
rnbra |
⊢ ran bra = ( LinFn ∩ ContFn ) |
6 |
|
fveq1 |
⊢ ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → ( ( bra ‘ 𝑥 ) ‘ 𝑧 ) = ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) ) |
7 |
|
braval |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) ‘ 𝑧 ) = ( 𝑧 ·ih 𝑥 ) ) |
8 |
7
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) ‘ 𝑧 ) = ( 𝑧 ·ih 𝑥 ) ) |
9 |
|
braval |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑧 ·ih 𝑦 ) ) |
10 |
9
|
adantll |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) = ( 𝑧 ·ih 𝑦 ) ) |
11 |
8 10
|
eqeq12d |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( ( bra ‘ 𝑥 ) ‘ 𝑧 ) = ( ( bra ‘ 𝑦 ) ‘ 𝑧 ) ↔ ( 𝑧 ·ih 𝑥 ) = ( 𝑧 ·ih 𝑦 ) ) ) |
12 |
6 11
|
syl5ib |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → ( 𝑧 ·ih 𝑥 ) = ( 𝑧 ·ih 𝑦 ) ) ) |
13 |
12
|
ralrimdva |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → ∀ 𝑧 ∈ ℋ ( 𝑧 ·ih 𝑥 ) = ( 𝑧 ·ih 𝑦 ) ) ) |
14 |
|
hial2eq2 |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ∀ 𝑧 ∈ ℋ ( 𝑧 ·ih 𝑥 ) = ( 𝑧 ·ih 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
15 |
13 14
|
sylibd |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
16 |
15
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
17 |
|
dff1o6 |
⊢ ( bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) ↔ ( bra Fn ℋ ∧ ran bra = ( LinFn ∩ ContFn ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( bra ‘ 𝑥 ) = ( bra ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
18 |
4 5 16 17
|
mpbir3an |
⊢ bra : ℋ –1-1-onto→ ( LinFn ∩ ContFn ) |