Metamath Proof Explorer


Theorem braadd

Description: Linearity property of bra for addition. (Contributed by NM, 23-May-2006) (New usage is discouraged.)

Ref Expression
Assertion braadd ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) + ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 ax-his2 ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 + 𝐶 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) )
2 1 3comr ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 + 𝐶 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) )
3 hvaddcl ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 + 𝐶 ) ∈ ℋ )
4 braval ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 + 𝐶 ) ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( 𝐵 + 𝐶 ) ·ih 𝐴 ) )
5 3 4 sylan2 ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( 𝐵 + 𝐶 ) ·ih 𝐴 ) )
6 5 3impb ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( 𝐵 + 𝐶 ) ·ih 𝐴 ) )
7 braval ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) )
8 7 3adant3 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) )
9 braval ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐴 ) )
10 9 3adant2 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐴 ) )
11 8 10 oveq12d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) + ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) )
12 2 6 11 3eqtr4d ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 + 𝐶 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) + ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) )