Step |
Hyp |
Ref |
Expression |
1 |
|
ax-his2 |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) |
2 |
1
|
3comr |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) |
3 |
|
hvaddcl |
⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) |
4 |
|
braval |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 +ℎ 𝐶 ) ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) |
5 |
3 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) |
6 |
5
|
3impb |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( 𝐵 +ℎ 𝐶 ) ·ih 𝐴 ) ) |
7 |
|
braval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) = ( 𝐵 ·ih 𝐴 ) ) |
9 |
|
braval |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐴 ) ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) = ( 𝐶 ·ih 𝐴 ) ) |
11 |
8 10
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) + ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐶 ·ih 𝐴 ) ) ) |
12 |
2 6 11
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( bra ‘ 𝐴 ) ‘ ( 𝐵 +ℎ 𝐶 ) ) = ( ( ( bra ‘ 𝐴 ) ‘ 𝐵 ) + ( ( bra ‘ 𝐴 ) ‘ 𝐶 ) ) ) |