Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | brab1 | ⊢ ( 𝑥 𝑅 𝐴 ↔ 𝑥 ∈ { 𝑧 ∣ 𝑧 𝑅 𝐴 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 𝑅 𝐴 ↔ 𝑦 𝑅 𝐴 ) ) | |
2 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝐴 ↔ 𝑥 𝑅 𝐴 ) ) | |
3 | 1 2 | sbcie2g | ⊢ ( 𝑥 ∈ V → ( [ 𝑥 / 𝑧 ] 𝑧 𝑅 𝐴 ↔ 𝑥 𝑅 𝐴 ) ) |
4 | 3 | elv | ⊢ ( [ 𝑥 / 𝑧 ] 𝑧 𝑅 𝐴 ↔ 𝑥 𝑅 𝐴 ) |
5 | df-sbc | ⊢ ( [ 𝑥 / 𝑧 ] 𝑧 𝑅 𝐴 ↔ 𝑥 ∈ { 𝑧 ∣ 𝑧 𝑅 𝐴 } ) | |
6 | 4 5 | bitr3i | ⊢ ( 𝑥 𝑅 𝐴 ↔ 𝑥 ∈ { 𝑧 ∣ 𝑧 𝑅 𝐴 } ) |