Metamath Proof Explorer


Theorem brab1

Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011)

Ref Expression
Assertion brab1 ( 𝑥 𝑅 𝐴𝑥 ∈ { 𝑧𝑧 𝑅 𝐴 } )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑧 = 𝑦 → ( 𝑧 𝑅 𝐴𝑦 𝑅 𝐴 ) )
2 breq1 ( 𝑦 = 𝑥 → ( 𝑦 𝑅 𝐴𝑥 𝑅 𝐴 ) )
3 1 2 sbcie2g ( 𝑥 ∈ V → ( [ 𝑥 / 𝑧 ] 𝑧 𝑅 𝐴𝑥 𝑅 𝐴 ) )
4 3 elv ( [ 𝑥 / 𝑧 ] 𝑧 𝑅 𝐴𝑥 𝑅 𝐴 )
5 df-sbc ( [ 𝑥 / 𝑧 ] 𝑧 𝑅 𝐴𝑥 ∈ { 𝑧𝑧 𝑅 𝐴 } )
6 4 5 bitr3i ( 𝑥 𝑅 𝐴𝑥 ∈ { 𝑧𝑧 𝑅 𝐴 } )