Metamath Proof Explorer
		
		
		
		Description:  The law of concretion for a binary relation.  (Contributed by NM, 19-Dec-2013)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | opelopaba.1 | ⊢ 𝐴  ∈  V | 
					
						|  |  | opelopaba.2 | ⊢ 𝐵  ∈  V | 
					
						|  |  | opelopaba.3 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝜑  ↔  𝜓 ) ) | 
					
						|  |  | braba.4 | ⊢ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝜑 } | 
				
					|  | Assertion | braba | ⊢  ( 𝐴 𝑅 𝐵  ↔  𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opelopaba.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | opelopaba.2 | ⊢ 𝐵  ∈  V | 
						
							| 3 |  | opelopaba.3 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑦  =  𝐵 )  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 4 |  | braba.4 | ⊢ 𝑅  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝜑 } | 
						
							| 5 | 3 4 | brabga | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐴 𝑅 𝐵  ↔  𝜓 ) ) | 
						
							| 6 | 1 2 5 | mp2an | ⊢ ( 𝐴 𝑅 𝐵  ↔  𝜓 ) |