Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opelopabga.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
brabga.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | ||
Assertion | brabga | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 𝑅 𝐵 ↔ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabga.1 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
2 | brabga.2 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
3 | df-br | ⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ) | |
4 | 2 | eleq2i | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ 𝑅 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
5 | 3 4 | bitri | ⊢ ( 𝐴 𝑅 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
6 | 1 | opelopabga | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 〈 𝐴 , 𝐵 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜓 ) ) |
7 | 5 6 | syl5bb | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 𝑅 𝐵 ↔ 𝜓 ) ) |