Metamath Proof Explorer


Theorem brabga

Description: The law of concretion for a binary relation. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses opelopabga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
brabga.2 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
Assertion brabga ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝑅 𝐵𝜓 ) )

Proof

Step Hyp Ref Expression
1 opelopabga.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
2 brabga.2 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
3 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
4 2 eleq2i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
5 3 4 bitri ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
6 1 opelopabga ( ( 𝐴𝑉𝐵𝑊 ) → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ 𝜓 ) )
7 5 6 bitrid ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 𝑅 𝐵𝜓 ) )