Metamath Proof Explorer


Theorem brabn

Description: The bra of a vector is a bounded functional. (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion brabn ( 𝐴 ∈ ℋ → ( normfn ‘ ( bra ‘ 𝐴 ) ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 branmfn ( 𝐴 ∈ ℋ → ( normfn ‘ ( bra ‘ 𝐴 ) ) = ( norm𝐴 ) )
2 normcl ( 𝐴 ∈ ℋ → ( norm𝐴 ) ∈ ℝ )
3 1 2 eqeltrd ( 𝐴 ∈ ℋ → ( normfn ‘ ( bra ‘ 𝐴 ) ) ∈ ℝ )