Metamath Proof Explorer


Theorem brabv

Description: If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017)

Ref Expression
Assertion brabv ( 𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )

Proof

Step Hyp Ref Expression
1 df-br ( 𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑌 ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
2 opprc ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ⟨ 𝑋 , 𝑌 ⟩ = ∅ )
3 0nelopab ¬ ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }
4 eleq1 ( ⟨ 𝑋 , 𝑌 ⟩ = ∅ → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ↔ ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } ) )
5 3 4 mtbiri ( ⟨ 𝑋 , 𝑌 ⟩ = ∅ → ¬ ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
6 2 5 syl ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ¬ ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
7 6 con4i ( ⟨ 𝑋 , 𝑌 ⟩ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )
8 1 7 sylbi ( 𝑋 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) )