Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
⊢ ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
2 |
|
opprc |
⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → 〈 𝑋 , 𝑌 〉 = ∅ ) |
3 |
|
0nelopab |
⊢ ¬ ∅ ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } |
4 |
|
eleq1 |
⊢ ( 〈 𝑋 , 𝑌 〉 = ∅ → ( 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ ∅ ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) ) |
5 |
3 4
|
mtbiri |
⊢ ( 〈 𝑋 , 𝑌 〉 = ∅ → ¬ 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
6 |
2 5
|
syl |
⊢ ( ¬ ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ¬ 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ) |
7 |
6
|
con4i |
⊢ ( 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
8 |
1 7
|
sylbi |
⊢ ( 𝑋 { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |